
z/OS
Version 2.Release 3

Cryptographic Services
Integrated Cryptographic Service Facility
System Programmer's Guide

IBM

SC14-7507-08

Note

Before using this information and the product it supports, read the information in “Notices” on page
453.

This edition applies to ICSF FMID HCR77D0 and Version 2 Release 3 of z/OS (5650-ZOS) and to all subsequent releases
and modifications until otherwise indicated in new editions.

Last updated: 2021-06-21
© Copyright International Business Machines Corporation 2007, 2021.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... xi

Tables.. xiii

About this information.. xxi
Who should use this information.. xxi
How to use this information.. xxi
Where to find more information... xxii

IBM Crypto Education.. xxiii

How to send your comments to IBM.. xxv
If you have a technical problem... xxv

Summary of changes.. xxvii
Changes made in Cryptographic Support for z/OS V2R2 - z/OS V2R3 (FMID HCR77D0).................... xxvii
Changes made in Cryptographic Support for z/OS V2R1 - z/OS V2R3 (FMID HCR77C1)................... xxviii
Changes made in Cryptographic Support for z/OS V2R1 - z/OS V2R2 (FMID HCR77C0)...................... xxx
Changes made in Cryptographic Support for z/OS V1R13 - z/OS V2R2 (FMID HCR77B1)...................xxxi

Chapter 1. Introduction to z/OS ICSF... 1
Features..1

Cryptographic hardware features.. 1
Server hardware... 2
z/OS ICSF FMIDs.. 4

ICSF features..5
The Cryptographic Key Data Set (CKDS)... 6
The Public Key Data Set (PKDS).. 7
The Token Data Set (TKDS)..7
Additional background information...7

Running PCF applications on z/OS ICSF.. 7
Using RMF and SMF to monitor z/OS ICSF events...8
Controlling access to ICSF... 8

Steps prior to starting installation... 9

Chapter 2. Installation, initialization, and customization...................................... 11
Steps for installation and initialization..11

Steps to customize SYS1.PARMLIB... 12
Creating the CKDS.. 13
Creating the PKDS.. 17
Creating the TKDS.. 19
ICSF system resource planning for random number generation..22
Steps to create the installation options data set...23
Creating an ICSF CTRACE configuration data set..25
Steps to create the ICSF startup procedure..27
Steps to provide access to the ICSF panels.. 29
Requiring signature verification for ICSF module CSFINPV2... 30
Steps to start ICSF for the first time.. 31

Customizing ICSF after the first start.. 33
Parameters in the installation options data set...33

 iii

Dispatching priority of ICSF... 52
Creating ICSF exits and generic services.. 52

Chapter 3. Migration.. 53
Terminology... 53
Migrating from earlier software releases.. 54

Actions to perform before installing ICSF FMID HCR77C0...54
Actions to perform before the first start of ICSF FMID HCR77C0.. 57
Actions to perform after the first start of ICSF FMID HCR77C0... 59
Callable services...61
CCA access control...67
Identification of cryptographic features..80
Ensure the expected P11 master key support is available... 80
Key store policy.. 81
KGUP...81
DES keys... 81
ICSF key data sets..82
Migrating to 24-byte DES master key.. 84
Installation options data set.. 84
Function restrictions.. 85
CICS attachment facility.. 85
Dynamic LPA load...86
Dynamic service update...86
Special secure mode.. 86
Resource Manager Interface (RMF)...86
System abend codes.. 87
SMF records..88
TKE workstation... 88

Migrating from the IBM eServer zSeries 900.. 90
Migrating a CKDS and PKDS between a CCF system and a non-CCF system..................................... 91
Callable services...95
Functions not supported.. 95
Setup considerations..95
Programming considerations... 95

Migrating to PCI-HSM 2016 compliance mode.. 96
Compliance warnings... 96
Migration process... 97

Chapter 4. Operating ICSF... 99
Starting and stopping ICSF..99

ARM policy..100
Starting ICSF during IPL-time... 100
Modifying ICSF...102
Command syntax notation.. 102

How to read syntax diagrams.. 102
ICSF operator commands... 104

Display ICSF... 104
SETICSF..113

Using different configurations... 124
Adding and removing cryptographic coprocessors.. 125

Adding cryptographic coprocessors.. 125
Steps for activating/deactivating cryptographic coprocessors.. 126
Steps to configure on/off cryptographic coprocessors... 126
Steps for enabling/disabling cryptographic coprocessors... 126

Adding and removing regional cryptographic servers.. 127
Steps to add a regional cryptographic server..128
Steps to remove a regional cryptographic server... 128

iv

Configuring ICSF to use TCP/IP for communications with regional cryptographic servers.............129
Displaying cryptographic coprocessor status using the DISPLAY ICSF operator command................ 131
Adding a regional cryptographic server using the SETICSF operator command...................................131
Changing regional cryptographic server status using the SETICSF operator command.......................131
Dynamic service update.. 132

Considerations when using dynamic service update..132
Steps to initiate dynamic service update.. 133
Verifying dynamic service update..135
Deactivating dynamic service update..135

Performance considerations for using installation options..135
Dispatching priority of ICSF...136
VTAM session-level encryption... 136
System SSL encryption.. 136
Access method services cryptographic option... 136
Remote key loading... 136
Event recording..137

System Management Facilities (SMF) recording... 137
Message recording... 146

Security considerations... 146
Controlling the program environment... 146
Controlling access to KGUP... 147
Controlling access to CSFDUTIL.. 147
Controlling access to the callable services... 147
Controlling access to cryptographic keys..147
Controlling access to secure key tokens... 147
Scheduling changes for cryptographic keys..148
Controlling access to administrative panel functions... 148
Obtaining RACF SMF log records... 148

Debugging aids.. 148
Component trace..148
Abnormal endings.. 149
IPCS formatting routine... 150
VERBX...151
Detecting ICSF serialization contention conditions.. 152

ENF signals.. 154

Chapter 5. Installation exits...157
Types of exits... 157

Mainline exits... 157
Exits for the services.. 158
The PCF CKDS conversion program exit..158
The single-record, read-write exit... 158
The cryptographic key data set entry retrieval exit...158
Security exits..158
The KGUP exit...159

Entry and return specifications... 159
Registers at entry... 159
Registers at return..160

Exits environment..161
Mainline exits... 161
Service exits... 161
CKDS entry retrieval exit.. 161
KGUP, Conversion Programs, and Single-record, Read-write exits.. 161
Security exits..161

Exit recovery.. 161
Mainline installation exits..162

Purpose and use of the exits..162

 v

Environment of the exits.. 162
Installing the exits..163
Input... 163
Return Codes..169

Services installation exits..170
Purpose and use of the exits..170
Environment of the exits.. 170
Installing the exits..171
Input... 172
Return Codes..177
CSF_SERVICE_EXIT - ICSF callable services exit... 178

Cryptographic key data set entry retrieval installation exit..180
Purpose and use of the exit... 180
Environment of the exit..180
Installing the exit... 181
Input... 181
Return codes.. 182

PCF conversion program installation exit... 182
Purpose and use of the exit... 183
Environment of the exit..183
Installing the exit... 183
Input... 184
Return codes.. 185

Single-record, Read-write installation exit... 185
Purpose and use of the exit... 186
Environment of the exit..186
Installing the exit... 186
Input... 187
Return codes.. 188

Exit points for security installation exits...189
Security installation exits.. 189

Purpose and use of the exits..189
Environment of the exits.. 190
Installing the exits..190
Input... 191
Return codes.. 192

Key generator utility program installation exit..193
Purpose and use of the exit... 193
Environment of the exit..194
Installing the exit... 194
Input... 195
The SET statement...203
Return codes.. 203

Chapter 6. Installation-defined Callable Services... 205
Writing a callable service...205

Contents of registers..206
Security access control checking.. 207
Checking the parameters...207
Link-editing the callable service.. 207

Defining a callable service...208
Writing a service stub.. 208

Example of a service stub.. 209

Chapter 7. Converting a CKDS from fixed length to variable length record format 215

Chapter 8. Migration from PCF to z/OS ICSF... 219

vi

Running PCF and z/OS ICSF on the same system.. 219
Running in compatibility mode.. 219
Running in coexistence mode..220
Changing the DES master key in compatibility or coexistence mode...221
Running in noncompatibility mode..221
Specifying compatibility modes during migration...221

Converting a PCF CKDS to ICSF format...222
How the PCF conversion program runs... 222
Using the conversion program override file...223
Running the conversion program...229

Appendix A. Diagnosis reference information.. 235
Cryptographic Key Data Set (CKDS) formats.. 235
Public Key Data Set (PKDS) format... 239

Format of the PKDS header record..239
Format of the PKDS record.. 240

Token data set (TKDS) format... 241
Format of the header record of the token data set... 241
Format of the token and object records.. 242

Common record format (KDSR)...270
AES key token format.. 273

AES internal fixed-length key token.. 273
Token validation value..274

DES key token formats.. 275
DES fixed-length key token..275
External RKX DES key token.. 279
DES null key token..280

Variable-length symmetric key token formats... 280
Variable-length symmetric key token..280
Variable-length symmetric null key token...307

PKA key token formats.. 308
Internal PKA tokens... 308
PKA null key token... 308
RSA key token formats...309
ECC key token format...338
Trusted blocks.. 343

Data areas.. 357
The Cryptographic Communication Vector Table (CCVT)... 357
The Cryptographic Communication Vector Table Extension (CCVE).. 359
Generic Service Table (CSFMGST)...360

RMF measurements table... 361

Appendix B. ICSF SMF records... 367
Record type 82 (52) — ICSF record...367

Record environment...368
Record mapping... 368
Subtype 1... 371
Subtype 7... 373
Subtype 8... 374
Subtype 9... 374
Subtype 13... 374
Subtype 14... 375
Subtype 15... 377
Subtype 16... 378
Subtype 18... 379
Subtype 19... 381
Subtype 20... 382

 vii

Subtype 21... 383
Subtype 22... 384
Subtype 23... 384
Subtype 24... 385
Subtype 25... 385
Subtype 26... 386
Subtype 27... 386
Subtype 28... 388
Subtype 29... 388
Subtype 30... 389
Subtype 31... 389
Subtype 40... 393
Subtype 41... 397
Subtype 42... 399
Subtype 43... 403
Subtype 44... 404
Subtype 45... 406
Subtype 46... 409
Subtype 47... 411
Subtype 48... 412

Appendix C. CICS-ICSF Attachment Facility... 421
Installing the CICS-ICSF Attachment Facility...421

Steps for installing the CICS-ICSF attachment facility... 421

Appendix D. Helpful hints for ICSF first time startup...425
Checklist for first-time startup of ICSF... 425

Step 1. Hardware setup... 425
Step 2. LPAR activation profiles...425
Step 3. ICSF setup... 426
Step 4. TKE setup...426
Step 5. ICSF startup...427
Step 6. Loading master keys and initializing the CKDS through ICSF panels...................................427
Step 7. Customizing TKE and loading master keys... 429
Step 8. CICS-ICSF Attachment Facility setup... 430
Step 9. Complete ICSF initialization..430

Commonly encountered ICSF first time setup/initialization messages...431

Appendix E. Using AMS REPRO encryption... 433
Steps for setting up ICSF ..433

Appendix F. Systems without Cryptographic features... 435
Applications and programs... 435
Callable services..435
ICSF setup and initialization..436
Secure Sockets Layer (SSL)... 437
TKE workstation...437

Appendix G. Resource names for CCA and ICSF entry points............................... 439

Appendix H. Accessibility.. 449
Accessibility features.. 449
Consult assistive technologies.. 449
Keyboard navigation of the user interface.. 449
Dotted decimal syntax diagrams...449

viii

Notices..453
Terms and conditions for product documentation... 454
IBM Online Privacy Statement.. 455
Policy for unsupported hardware..455
Minimum supported hardware..455
Trademarks.. 456

Index.. 457

 ix

x

Figures

1. Multiple Crypto coprocessors on a complex.. 125

2. ICSF coprocessor managementpanelsICSF Coprocessor Management...126

3. EXPB control block for mainline exits.. 164

4. EXPB control block in the service exits.. 172

5. Example of a service entry and exit..207

6. Example of a service stub (1 of 5)service stubexample.. 210

7. Example of a service stub (2 of 5).. 211

8. Example of a service stub (3 of 5).. 212

9. Example of a service stub (4 of 5).. 213

10. Example of a service stub (5 of 5).. 214

11. Example of a Conversion Initial Activity Report...231

12. Example of a Conversion Update Activity Report.. 232

 xi

xii

Tables

1. z/OS ICSF FMIDs... 5

2. FMID and Hardware.. 5

3. Information about this migration action ..54

4. Information about this migration action ..56

5. Information about this migration action ..57

6. Information about this migration action ..58

7. Information about this migration action ..59

8. Summary of new and changed ICSF callable services...61

9. Summary of new and changed CCA access controls... 67

10. Cryptographic adapter identification..80

11. Mapping of Enterprise PKCS #11 ACPs to firmware levels..90

12. Syntax examples...103

13. DISPLAY GRS command syntax ICSF key data set ENQ resources...153

14. ICSF ENF codes...155

15. EXPB Control Block format for Mainline Exits..164

16. CSFEXIT1 parameters.. 165

17. CSFEXIT2 and CSFEXIT3 parameters..166

18. CSFEXIT4 and CSFEXIT5 parameters..166

19. Format of the Exit Name table..167

20. Compatibility services and their ICSF names.. 172

21. EXPB Control Block Format for Services..173

22. SPB Control Block Format.. 175

23. IXIB control block format... 179

 xiii

24. The CKDS Entry Retrieval Exit Parameters.. 182

25. CVXP Control Block Format.. 184

26. RWXP Control Block Format... 187

27. Parameters received by the Security Service Exit... 192

28. Parameters received by the Security Key Exit... 192

29. KGXP Control Block Format..195

30. Format of Records in the Override File...224

31. Cryptographic Key Data Set Header Record Format..235

32. Cryptographic Key Data Set Record Format...237

33. Variable-Length Cryptographic Key Data Set Record Format..238

34. Public Key Data Set Header Record Format...239

35. Public Key Data Set Record Format..240

36. Format of the header record of the token data set.. 241

37. Format of the common section of the token and object records.. 242

38. Format of the unique section of the token record... 243

39. Format of the token object flags...244

40. Format of the token certificate object..245

41. Format of the token public key object (Version 0)... 246

42. Format of the token public key object (Version 1)... 247

43. Format of the token public key object (Version 2)... 250

44. Format of the token public key object (Version 3)... 252

45. Format of the token private key object (Version 0)..254

46. Format of the token private key object (Version 1)..255

47. Format of the token private key object (Version 2)..258

48. Format of the token private key object (Version 3)..261

xiv

49. Format of the token secret key object (Version 0)...264

50. Format of the token secret key object (Version 1)...265

51. Format of the token secret key object (Version 3)...266

52. Format of the token domain parameters object (Version 1)... 267

53. Format of the token domain parameters object (Version 2)... 268

54. Format of the token data object... 269

55. Format of the KDSR record fixed data area..271

56. Format of KDSR metadata area.. 272

57. Format of KDSR variable-length metadata block.. 273

58. AES internal fixed-length key token format... 273

59. DES internal fixed-length key token format... 275

60. Format of DES external fixed-length key tokens..277

61. External RKX DES key-token format, version X'10'... 279

62. Format of Null Key Tokens..280

63. Variable-length symmetric key token.. 280

64. DESUSECV key-usage fields... 285

65. HMAC algorithm key-usage fields.. 285

66. AES algorithm MAC key associated data..287

67. AES algorithm PINCALC key associated data.. 288

68. AES algorithm PINPROT key associated data..289

69. AES algorithm PINPRW key associated data... 291

70. AES algorithm DKYGENKY key associated data...293

71. AES algorithm SECMSG key associated data... 297

72. AES algorithm KEK key-usage fields.. 298

73. AES algorithm CIPHER key associated data.. 300

 xv

74. AES and HMAC algorithm key-management fields..302

75. DESUSECV key-management fields... 306

76. AES algorithm KDKGENKY key-usage fields.. 306

77. Variable-length symmetric null token.. 307

78. Format of PKA Null Key Tokens.. 308

79. RSA Public Key Token... 309

80. RSA Private External Key Token Basic Record Format.. 310

81. RSA Private Key Token, 1024-bit Modulus-Exponent external format... 311

82. RSA Private Key Token, 4096-bit Modulus-Exponent external format... 312

83. RSA Private Key Token, 4096-bit Chinese Remainder Theorem external format.................................313

84. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30')
external form..315

85. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section
(X'31') external form.. 319

86. RSA Private Internal Key Token Basic Record Format...324

87. RSA Private Internal Key Token, 1024-bit X’02’ ME Form.. 325

88. RSA Private Internal Key Token, 1024-bit X’06’ ME Form.. 326

89. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30')
internal form...328

90. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section
(X'31') internal form...332

91. RSA Private Internal Key Token, 4096-bit Chinese Remainder Theorem Internal Format..................336

92. ECC Key Token Format..338

93. Associated Data Format for ECC Private Key Token.. 342

94. AESKW Wrapped Payload Format for ECC Private Key Token... 343

95. Trusted block sections..344

96. Trusted block header.. 345

97. Trusted block trusted RSA public-key section (X'11')... 346

xvi

98. Trusted block rule section (X'12').. 347

99. Summary of trusted block rule subsection.. 348

100. Transport key variant subsection (X'0001' of trusted block rule section (X'12')............................... 349

101. Transport key rule reference subsection (X'0002') of trusted block rule section (X'12').................. 350

102. Common export key parameters subsection (X'0003') of trusted block rule section (X'12')............350

103. Source key rule reference subsection (X'0004' of trusted block rule section (X'12')........................ 351

104. Export key CCA token parameters subsection (X'0005') of trusted block rule section (X'12')..........352

105. Trusted block key label (name) section X'13'..354

106. Trusted block information section X'14'.. 354

107. Summary of trusted block information subsections... 354

108. Protection information subsection (X'0001') of trusted block information section (X'14')............... 355

109. Activation and expiration dates subsection (X'0002') of trusted block information section (X'14'). 356

110. Trusted block application-defined data section X'15'...356

111. Cryptographic communication vector table...358

112. Cryptographic Communication Vector Table Extension.. 359

113. Generic Service Table Block Format.. 360

114. RMF measurements record format.. 361

115. Format of an SMF Type 82 record for subtypes smaller than 40.. 368

116. Format of an SMF Type 82 record for subtypes 40 and higher... 368

117. SMF record header... 368

118. ICSF header (for all subtypes 40 or greater)... 369

119. SMF type 82 server user or end user audit section... 370

120. Audit header... 370

121. Tag-Length-Value (TLV) triplet structure (SMF82AUD_TRIPLET)... 370

122. TLV triplet tag values.. 370

 xvii

123. Tag-Length-Value triplets... 371

124. Subtype 1 Initialization/Options Refresh...372

125. Subtype 7 operational key entry.. 373

126. Subtype 8 Cryptographic key data set refresh...374

127. Subtype 9 Dynamic CKDS update.. 374

128. Subtype 13 Dynamic PKDS update.. 375

129. Subtype 14 Cryptographic coprocessor master key entry.. 376

130. Subtype 15 PCI Cryptographic coprocessor retained key create/delete... 377

131. Subtype 16 PCI Cryptographic Coprocessor TKE..378

132. Subtype 16 PCI Cryptographic Coprocessor TKE audit data.. 379

133. Subtype 18 Cryptographic Processor Configuration... 380

134. Subtype 19 PCI X Cryptographic Coprocessor Timing.. 381

135. Subtype 20 Cryptographic Processor Processing Times...382

136. Subtype 21 ICSF Sysplex Group Change... 383

137. Subtype 22 Trusted Block Create Callable Services... 384

138. Subtype 23 Token Data Set Update... 385

139. Subtype 24 Duplicate Tokens Found... 385

140. Subtype 25 Key Store Policy Key Token Authorization Checking..386

141. Subtype 26 Public Key Data Set Refresh... 386

142. Subtype 27 PKA Key Management Extensions..387

143. Subtype 28 High Performance Encrypted Key...388

144. Subtype 29 TKE Workstation Audit Record... 388

145. Subtype 30 Archived and inactive KDS records...389

146. Subtype 31 Cryptographic usage statistics... 389

147. Subtype 31 SMF82_TRIPL..390

xviii

148. Subtype 31 tag values.. 390

149. SMF82STAT_ALG algorithm names..391

150. Subtype 40 CCA symmetric key lifecycle event...394

151. Subtype 41 CCA asymmetric key lifecycle event...397

152. Subtype 42 PKCS#11 object lifecycle event... 400

153. Subtype 43 Regional cryptographic server configuration... 403

154. Subtype 44 CCA symmetric key usage event.. 404

155. Subtype 45 CCA asymmetric key usage event...406

156. Subtype 46 PKCS#11 key usage event..409

157. Subtype 47 PKCS#11 no key usage event...412

158. Subtype 48 Compliance warning event... 413

159. Resource names for CCA and ICSF entry points..439

 xix

xx

About this information

This information describes how to initialize, customize, operate, and diagnose the z/OS Integrated
Cryptographic Service Facility (ICSF). The z/OS Cryptographic Services includes these components:

• z/OS Integrated Cryptographic Service Facility (ICSF)
• z/OS System Secure Socket Level Programming (SSL)
• z/OS Public Key Infrastructure Services (PKI)

ICSF is a software element of z/OS that works with the hardware cryptographic feature and the Security
Server (RACF) to provide secure, high-speed cryptographic services. ICSF provides the application
programming interfaces by which applications request the cryptographic services.

Who should use this information
This information is intended for the system programmer. It describes the tasks that a system programmer
might perform:

• Programming installation options, installation-defined callable services, and installation exits
• Creating the data sets that ICSF uses
• Migrating the system from the Cryptographic Unit Support Program (CUSP) and Programmed

Cryptographic Facility (PCF) to ICSF
• Migrating to z/OS ICSF
• Starting and stopping ICSF
• Checking event recording
• Planning for security and performance considerations
• Debugging and recovering from problems

Defining and writing installation-defined callable services and installation exit routines is intended to be
accomplished primarily by experienced system programmers. This information assumes that the reader
has an advanced knowledge of z/OS.

How to use this information
This information is divided into descriptions of these tasks:

• Introducing ICSF

– Chapter 1, “Introduction to z/OS ICSF,” on page 1 introduces the cryptographic key data set
(CKDS), the public key data set (PKDS), and the token data set (TKDS) and provides basic information
about running PCF applications on ICSF and preparing for installation.

• Initializing ICSF

– Chapter 2, “Installation, initialization, and customization,” on page 11 describes how to customize
SYS1.PARMLIB, create the CKDS, the PKDS, and the TKDS, the installations options data set, the
startup procedure, and provide access to the ICSF panels. It also explains how to change the
parameters in the installation options data set after the first start and introduces installation exits.

• Migration and coexistence issues

Chapter 8, “Migration from PCF to z/OS ICSF,” on page 219 describes how to migrate application
programs and cryptographic key data set information to z/OS ICSF from the IBM cryptographic products
CUSP/PCF.

Chapter 3, “Migration,” on page 53 describes migration to this release of ICSF from previous releases
of ICSF.

© Copyright IBM Corp. 2007, 2021 xxi

• Customizing ICSF

– Chapter 6, “Installation-defined Callable Services,” on page 205 gives information that an
experienced system programmer can use to write installation-defined callable services. It also
explains how to define these callable services to ICSF and how to write service stubs to access them.

– Chapter 5, “Installation exits,” on page 157 describes the ICSF installation exits you can use to
customize ICSF.

• Operating ICSF

– Chapter 4, “Operating ICSF,” on page 99 describes how to add and remove cryptographic
coprocessors and to start, modify, and stop ICSF and other operating considerations.

– “ICSF operator commands” on page 104 describes the console commands available for ICSF.
– “Event recording” on page 137 describes ICSF event recording on the Security Console and SMF.

• Planning ICSF

– “Security considerations” on page 146 describes methods you can use to protect ICSF resources.
• Diagnosing ICSF

– “Debugging aids” on page 148 describes the use of component trace and Interactive Problem Control
System (IPCS) to debug ICSF.

– Appendix A, “ Diagnosis reference information,” on page 235 maps the cryptographic key data set
and the cryptographic communication vector tables as reference information for use in debugging.
This appendix also maps CCA key tokens (DES, AES, RSA, and ECC) and trusted blocks.

– Appendix B, “ICSF SMF records,” on page 367 describes SMF Record type 82, which is used to record
information about the events and operations of ICSF. Record type 82 is written to the SMF data set at
the completion of certain cryptographic functions.

– Appendix C, “CICS-ICSF Attachment Facility,” on page 421 defines steps to install the CICS-ICSF
Attachment Facility.

– Appendix D, “Helpful hints for ICSF first time startup,” on page 425 defines helpful hints and that you
may encounter when starting ICSF for the first time.

– Appendix E, “Using AMS REPRO encryption,” on page 433 provides information on using IDCAMS
REPRO ENCIPHER and DECIPHER options with ICSF.

– Appendix F, “Systems without Cryptographic features,” on page 435 describes processing and
functionality support for this environment.

– Appendix H, “Accessibility,” on page 449 contains information on accessibility features in z/OS.
– “Notices” on page 453 contains information on notices, programming interface information and

trademarks.

Where to find more information
The publications in the z/OS ICSF library include:

• z/OS Cryptographic Services ICSF Overview
• z/OS Cryptographic Services ICSF Administrator's Guide
• z/OS Cryptographic Services ICSF System Programmer's Guide
• z/OS Cryptographic Services ICSF Application Programmer's Guide
• z/OS Cryptographic Services ICSF Messages
• z/OS Cryptographic Services ICSF Writing PKCS #11 Applications
• z/OS Cryptographic Services ICSF TKE Workstation User's Guide

This publication also refers to these publications:

• IBM ES/3090 Processor Complex Recovery Guide
• z/OS Planning for Installation

xxii About this information

• z/OS Security Server RACF Auditor's Guide
• z/OS Security Server RACF Command Language Reference
• z/OS Security Server RACF Security Administrator's Guide
• z/OS Security Server RACF Macros and Interfaces
• z/OS Security Server RACF System Programmer's Guide
• z/OS MVS IPCS User's Guide
• z/OS MVS System Codes
• z/OS MVS System Management Facilities (SMF)
• z/OS MVS Programming: Extended Addressability Guide
• z/OS MVS Initialization and Tuning Guide
• z/OS MVS Initialization and Tuning Reference
• z/OS DFSMS Access Method Services Commands
• z/OS DFSMS Using Data Sets
• IBM Distributed Key Management System, Installation and Customization Guide
• OS/VS1 and OS/VS2 MVS Cryptographic Unit Support: Installation Manual
• OS/VS1 and OS/VS2 MVS Programmed Cryptographic Facility
• IBM 4767 Specification Sheet
• IBM 4767 Warranty Information Flyer
• IBM 4765 Specification Sheet
• IBM 4765 Warranty Information Flyer
• CCA Basic Services Reference and Guide for the IBM 4767 and IBM 4765 PCIe Cryptographic

Coprocessors

IBM Crypto Education
The IBM Crypto Education (community.ibm.com/community/user/ibmz-and-linuxone/groups/community-
home?CommunityKey=6593e27b-caf6-4f6c-a8a8-10b62a02509c) community provides detailed
explanations and samples pertaining to IBM cryptographic technology.

About this information xxiii

https://community.ibm.com/community/user/ibmz-and-linuxone/groups/community-home?CommunityKey=6593e27b-caf6-4f6c-a8a8-10b62a02509c
https://community.ibm.com/community/user/ibmz-and-linuxone/groups/community-home?CommunityKey=6593e27b-caf6-4f6c-a8a8-10b62a02509c

xxiv z/OS: z/OS ICSF System Programmer's Guide

How to send your comments to IBM

We invite you to submit comments about the z/OS® product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page xxv.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM® Documentation function
If your comment or question is about the IBM Knowledge Center functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Documentation Support
at ibmkc@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The following deliverable title and order number: z/OS ICSF System Programmer's Guide,

SC14-7507-08
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 2007, 2021 xxv

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmkc@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

xxvi z/OS: z/OS ICSF System Programmer's Guide

Summary of changes

ICSF is an element of z/OS, but provides independent ICSF releases as web deliverables. These web
deliverables are identified by their FMID. Each release of z/OS includes a particular ICSF FMID level as
part of its base. See “z/OS ICSF FMIDs” on page 4 for more information on z/OS ICSF FMIDs and their
relationships to z/OS releases.

ICSF publications can be obtained from:

• The Resource Link home page (www.ibm.com/servers/resourcelink). (Select Publications and then
select the release that you are interested in under ICSF Publications by FMID.)

• IBM z/OS downloads (www.ibm.com/systems/z/os/zos/downloads) for Cryptographic Support.

This document contains terminology, maintenance, and editorial changes to improve consistency and
retrievability. Technical changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Changes made in Cryptographic Support for z/OS V2R2 - z/OS
V2R3 (FMID HCR77D0)

This document contains information previously presented in z/OS ICSF System Programmer's Guide,
SC14-7507-07.

This document is for ICSF FMID HCR77D0. This release of ICSF runs on z/OS V2R2 and z/OS V2R3 and
only on zSeries hardware.

The most recent updates are listed at the top of each section.

New

Prior to the June 2020 refresh

• “KGUP” on page 81
• “Dynamic service update” on page 86
• “Starting ICSF during IPL-time” on page 100
• “ARM policy” on page 100
• “Dynamic service update” on page 132

Changed

December 2020 refresh

• “CCA access control” on page 67 (APAR OA60165)

June 2020 refresh

• “ARM policy” on page 100 (APAR OA59120)

Prior to the June 2020 refresh

• “Callable services” on page 61 (APAR OA58306)
• “CCA access control” on page 67 (APAR OA58306)
• “Variable-length symmetric key token” on page 280 (APAR OA58306)
• “Callable services” on page 61 (APAR OA57089)
• “CCA access control” on page 67 (APAR OA57089)

© Copyright IBM Corp. 2007, 2021 xxvii

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/systems/z/os/zos/downloads

• “CICS attachment facility” on page 85 (APAR OA57089)
• “RMF measurements table” on page 361 (APAR OA57089)
• “Subtype 27” on page 386 (APAR OA57089)
• “Subtype 40” on page 393 (APAR OA57089)
• “Subtype 41” on page 397 (APAR OA57089)
• “Subtype 45” on page 406 (APAR OA57089)
• “Subtype 48” on page 412 (APAR OA57089)
• “Subtype 31” on page 389 (APAR OA56349)
• “Subtype 42” on page 399 (APAR OA56349)
• “Subtype 46” on page 409 (APAR OA56349)
• “Steps to create the ICSF startup procedure” on page 27
• “Customizing ICSF after the first start” on page 33
• “Parameters in the installation options data set” on page 33
• “Display ICSF” on page 104
• “SETICSF” on page 113
• “System Management Facilities (SMF) recording” on page 137

– “Dynamic CKDS Update (Subtype 9)” on page 140
– “Dynamic PKDS Update (Subtype 13)” on page 140
– “Token Data Set (TKDS) (Subtype 23)” on page 142

• “CSFEXIT1” on page 162
• “The Cryptographic Communication Vector Table (CCVT)” on page 357
• “Record type 82 (52) — ICSF record” on page 367

– “Subtype 1” on page 371
– “Subtype 7” on page 373
– “Subtype 9” on page 374
– “Subtype 13” on page 374
– “Subtype 23” on page 384
– “Subtype 42” on page 399
– “Subtype 46” on page 409

Deleted

No content was removed from this information.

Changes made in Cryptographic Support for z/OS V2R1 - z/OS
V2R3 (FMID HCR77C1)

This document contains information previously presented in z/OS ICSF System Programmer's Guide,
SC14-7507-06.

This document is for ICSF FMID HCR77C1. This release of ICSF runs on z/OS z/OS V2R1, V2R2, and V2R3
and only on zSeries hardware.

The most recent updates are listed at the top of each section.

New

xxviii z/OS: z/OS ICSF System Programmer's Guide

• Information about IBM z14 and IBM z14 ZR1.
• “DES keys” on page 81 (APAR OA55184).
• “Starting ICSF during IPL-time” on page 100 (APAR OA55378).
• The SMF Formatter has been updated and the newest version should be utilized for proper formatting.
• New system abend codes are summarized in “System abend codes” on page 87.
• “Migrating to PCI-HSM 2016 compliance mode” on page 96.
• “Cryptographic usage statistics (Subtype 31)” on page 144.
• “Compliance warning event (Subtype 48)” on page 146.
• “VERBX” on page 151.
• “IPCS support for diagnosing contention issues in a dump” on page 154.
• “Subtype 48” on page 412.

Changed

• “Parameters in the installation options data set” on page 33 (APAR OA55184).
• “Callable services” on page 61 (APAR OA55184).
• “CCA access control” on page 67 (APAR OA55184).
• “CICS attachment facility” on page 85 (APAR OA55184).
• “Installing the exits” on page 171 (APAR OA55184).
• “Input” on page 195 (APAR OA55184).
• “DES key token formats” on page 275 (APAR OA55184).
• “DES fixed-length key token” on page 275 (APAR OA54132).
• “Variable-length symmetric key token formats” on page 280 (APAR OA55184).
• “RMF measurements table” on page 361 (APAR OA55184).
• “Service names used in SMF records” on page 371 (APAR OA55184).
• “PKCS#11 object lifecycle event” on page 399 (APAR OA54346).
• “PKCS#11 key usage event” on page 409 (APAR OA54346).
• “Parameters in the installation options data set” on page 33.
• “System abend codes” on page 87.
• “Starting and stopping ICSF” on page 99.
• “Display ICSF” on page 104.
• “SETICSF” on page 113.
• “High Performance Encrypted Key (Subtype 28)” on page 144.
• ICSF SMF records:

– “Subtype 7” on page 373.
– “Subtype 14” on page 375.
– “Subtype 15” on page 377.
– “Subtype 16” on page 378.
– “Subtype 18” on page 379.
– “Subtype 20” on page 382.
– “Subtype 21” on page 383.
– “Subtype 28” on page 388.
– “Subtype 40” on page 393.

Summary of changes xxix

– “Subtype 44” on page 404.

Deleted

No content was removed from this information.

Changes made in Cryptographic Support for z/OS V2R1 - z/OS
V2R2 (FMID HCR77C0)

This document contains information previously presented in z/OS ICSF System Programmer's Guide,
SC14-7507-05.

This document is for ICSF FMID HCR77C0. This release of ICSF runs on z/OS V2R1 and z/OS V2R2 and
only on zSeries hardware.

The most recent updates are listed at the top of each section.

New

• “Starting ICSF during IPL-time” on page 100 is new (APAR OA55378).
• New CSF.SCSFSTUB dataset.
• New SMF subtypes: 40, 41, 42, 44, 45, 46, and 47.
• New system abend codes are summarized in “System abend codes” on page 87.
• “ENF signals” on page 154 is new.

Changed

• “Subtype 42” on page 399 (APAR OA55958).
• “Subtype 46” on page 409 (APAR OA55958).
• “PKCS#11 object lifecycle event” on page 399 has been updated (APAR OA54346).
• “PKCS#11 key usage event” on page 409 has been updated (APAR OA54346).
• “Starting and stopping ICSF” on page 99 has been updated.
• “High Performance Encrypted Key (Subtype 28)” on page 144 has been updated.
• “Subtype 28” on page 388 has been updated.
• SMF subtype 1 is written whenever ICSF is started or the options refresh is performed.
• “The Cryptographic Key Data Set (CKDS)” on page 6 has been updated.
• “The Public Key Data Set (PKDS)” on page 7 has been updated.
• “Steps to create the CKDS” on page 14 has been updated.
• “Steps to create the PKDS” on page 18 has been updated.
• “Steps to create the TKDS” on page 20 has been updated.
• “Parameters in the installation options data set” on page 33 has been updated.
• “Callable services” on page 61 has been updated.
• “CICS attachment facility” on page 85 has been updated.
• “SETICSF” on page 113 has been updated.
• “Installing the exits” on page 171 has been updated.
• “Installing the exits” on page 190 has been updated.

xxx z/OS: z/OS ICSF System Programmer's Guide

Deleted

No content was removed from this information.

Changes made in Cryptographic Support for z/OS V1R13 - z/OS
V2R2 (FMID HCR77B1)

This document contains information previously presented in z/OS ICSF System Programmer's Guide,
SC14-7507-03.

This document is for ICSF FMID HCR77B1. This release of ICSF runs on z/OS V1R13, z/OS V2R1, and z/OS
V2R2 and only on zSeries hardware.

The most recent updates are listed at the top of each section.

New

• Updated to include information about IBM z13s.
• Added information about the Encrypted PIN Translate Enhanced and Key Encryption Translate services.
• Added information about regional cryptographic servers.
• New system abend code is summarized in “System abend codes” on page 87.
• “Server hardware” on page 2 was updated with information on regional cryptographic servers.
• New system abend codes are summarized in “System abend codes” on page 87.
• “Command syntax notation” on page 102 is new.
• “ICSF operator commands” on page 104 is new and includes the “Display ICSF” on page 104 and the

“SETICSF” on page 113 commands.
• “Adding and removing regional cryptographic servers” on page 127 is new.
• “Configuring ICSF to use TCP/IP for communications with regional cryptographic servers” on page 129

is new.
• “Displaying cryptographic coprocessor status using the DISPLAY ICSF operator command” on page 131

is new.
• “Changing regional cryptographic server status using the SETICSF operator command” on page 131 is

new.
• “ICSF header (for all subtypes 40 or greater)” on page 369 is new.
• “Regional cryptographic server configuration (Subtype 43)” on page 145 is new. Details about SMF

record subtype 43 can be found in “Subtype 43” on page 403.

Changed

• Terminology changed from open cryptographic services to regional cryptographic services.
• Updates to “Parameters in the installation options data set” on page 33:

– Six new EMV services added.
– New MASTERKCVLEN and REMOTEDEVICE keywords added.
– The deprecation of the HDRDATE keyword. If this option is specified, it will be tolerated, but is no

longer supported.
• “Callable services” on page 61 was updated with information on the six new EMV services and updates

to Key Generate, PKA Decrypt, and PKA Encrypt.
• “Installing the exits” on page 171 was updated with information on the six new EMV services.

Summary of changes xxxi

• “Secondary parameter block” on page 175 was updated.
• “Format of the header record of the token data set” on page 241 was updated.

Deleted

No content was removed from this information.

xxxii z/OS: z/OS ICSF System Programmer's Guide

Chapter 1. Introduction to z/OS ICSF

ICSF is a software element of z/OS. ICSF works with the hardware cryptographic features and the Security
Server (RACF element) to provide secure, high-speed cryptographic services in the z/OS environment.
ICSF provides the application programming interfaces by which applications request the cryptographic
services. ICSF is also the means by which the secure cryptographic features are loaded with master key
values, allowing the hardware features to be used by applications. The cryptographic feature is secure,
high-speed hardware that performs the actual cryptographic functions. Your processor hardware
determines the cryptographic feature available to your applications.

Features

Cryptographic hardware features
This topic describes the cryptographic hardware features available. Information on adding and removing
cryptographic coprocessors can be found in z/OS Cryptographic Services ICSF Administrator's Guide.

Crypto Express6 adapter (CEX6C, CEX6P, or CEX6A)
The Crypto Express6 adapter is an asynchronous cryptographic coprocessor or accelerator. The adapter
contains one cryptographic engine that can be configured as a coprocessor (CEX6C for CCA and CEX6P for
PKCS #11) or as an accelerator (CEX6A). It is available on IBM z14 and IBM z14 ZR1.

Crypto Express5 adapter (CEX5C, CEX5P, or CEX5A)
The Crypto Express5 adapter is an asynchronous cryptographic coprocessor or accelerator. The adapter
contains one cryptographic engine that can be configured as a coprocessor (CEX5C for CCA and CEX5P for
PKCS #11) or as an accelerator (CEX5A). It is available on IBM z13, IBM z13s, IBM z14, and IBM z14 ZR1.

Crypto Express4 adapter (CEX4C, CEX4P, or CEX4A)
The Crypto Express4 adapter is an asynchronous cryptographic coprocessor or accelerator. The adapter
may be configured as a CCA coprocessor (CEX4C), an Enterprise PKCS #11 coprocessor (CEX4P), or as an
accelerator (CEX4A). It is available on IBM zEnterprise EC12 and IBM zEnterprise BC12.

Crypto Express3 adapter (CEX3C or CEX3A)
The Crypto Express3 adapter is an asynchronous cryptographic coprocessor or accelerator. The adapter
contains two cryptographic engines that can be independently configured as a coprocessor (CEX3C) or as
an accelerator (CEX3A). It is available on the IBM System z10 Enterprise Class, IBM System z10 Business
Class, IBM zEnterprise 196, IBM zEnterprise 114, IBM zEnterprise EC12, and the IBM zEnterprise BC12.

Crypto Express2 adapter (CEX2C or CEX2A)

The Crypto Express2 adapter is an asynchronous cryptographic coprocessor or accelerator. The adapter
contains two cryptographic engines that can be independently configured as a coprocessor (CEX2C) or as
an accelerator (CEX2A). It is available on the IBM System z9 Enterprise Class, IBM System z9 Business
Class, IBM System z10 Enterprise Class, and IBM System z10 Business Class.

CP Assist for Cryptographic Functions (CPACF)

© Copyright IBM Corp. 2007, 2021 1

CPACF is a set of cryptographic instructions available on all CPs. Use of the CPACF instructions provides
improved performance. The SHA-1 algorithm is always available. Additional algorithms are available with
the appropriate enablement. For more information, see “Server hardware” on page 2.

CP Assist for Cryptographic Functions (CPACF) DES/TDES Enablement, feature 3863, provides for clear
key DES and TDES instructions. On the z9 EC / z9 BC and later systems, this feature includes clear key
AES for 128-bit keys. On z10 EC / z10 BC and later systems, this feature also includes clear key AES for
192-bit and 256-bit keys.

Server hardware
This topic describes the servers on which the cryptographic hardware features are available.

Regional cryptographic server
Regional cryptographic servers are network-attached, stand-alone devices or dedicated Linux LPARs that
perform geography-specific cryptography. Later generations of these servers add international algorithm
support. These servers are secure key hardware security modules (HSMs) that operate similar to IBM's
PKCS #11 secure coprocessors (CEXnP). They are marketed and serviced by third-party vendors.
Currently, the only geography-specific cryptography that is supported by these devices is the Chinese SMx
family of algorithms. Secure keys are stored in the TKDS, protected by the Regional Cryptography Server
Master Key (RCS-MK).

The network-attached, stand-alone devices require no particular zSeries hardware, but do require
communicating with z/OS V1R13 or later and ICSF FMID HCR77B1 or later. ICSF communicates with
these devices using TCP/IP, with optional TLS protection. The Linux LPARs require IBM z13 or later
hardware. ICSF communicates with the Linux LPARs using TCP/IP, with TLS protection required.

Once configured and online, ICSF makes the algorithms that are offered by these devices available as
PKCS #11 vendor-defined extensions.

• For information on configuring these devices, see z/OS Cryptographic Services ICSF System
Programmer's Guide.

• For information on the algorithms offered, see z/OS Cryptographic Services ICSF Writing PKCS #11
Applications and z/OS Cryptographic Services ICSF Application Programmer's Guide.

IBM z15
The IBM z15 provides constraint relief and addresses various customer demands. It has several
cryptographic features.

• CP Assist for Cryptographic Functions is implemented on every processor. SHA-1, SHA-2, and SHA-3
secure hashing and SHAKE extendable output functions are directly available to application programs.

• Feature code 3863, CP Assist for Cryptographic Functions (CPACF) DES/TDES Enablement - enables
DES, TDES, and AES instructions on all CPs. This feature also includes clear key ECC algorithm for NIST
and Edwards curves.

• Feature code 0899, Crypto Express7 adapter - optional, and only available if you have feature 3863,
CPACF DES/TDES Enablement installed. The IBM z15 can support a maximum of 60 adapters and the
IBM z15 Model T02 can support a maximum of 40 adapters. Each feature code has one hardware
adapter which can be configured as a CCA coprocessor, a PKCS #11 coprocessor, or an accelerator.

• Feature code 0898, Crypto Express7 adapter - optional, and only available if you have feature 3863,
CPACF DES/TDES Enablement installed. The IBM z15 can support a maximum of 60 adapters and the
IBM z15 Model T02 can support a maximum of 40 adapters. Each feature code has two hardware
adapters and each can be configured as a CCA coprocessor, a PKCS #11 coprocessor, or an accelerator.

• Feature code 0893, Crypto Express6 adapter - optional, and only available if you have feature 3863,
CPACF DES/TDES Enablement installed. The IBM z15 can support a maximum of 16 adapters. Each
adapter code has one hardware adapter which can be configured as a CCA coprocessor, a PKCS #11
coprocessor, or an accelerator.

2 z/OS: z/OS ICSF System Programmer's Guide

• Feature code 0890, Crypto Express5 adapter - optional, and only available if you have feature 3863,
CPACF DES/TDES Enablement installed. The IBM z15 can support a maximum of 16 adapters. Each
feature code has one hardware feature which can be configured as a CCA coprocessor, a PKCS #11
coprocessor, or an accelerator.

Note: The IBM z15 can have at most 60 Crypto Express adapters installed.

IBM z14 and IBM z14 ZR1
The IBM z14 and IBM z14 ZR1 provides constraint relief and addresses various customer demands. It has
several cryptographic features.

• CP Assist for Cryptographic Functions is implemented on every processor. SHA-1, SHA-2, and SHA-3
secure hashing and SHAKE extendable output functions are directly available to application programs.

• Feature code 3863, CP Assist for Cryptographic Functions (CPACF) DES/TDES Enablement - enables
DES, TDES, and AES instructions on all CPs.

• Feature code 0893, Crypto Express6 adapter - optional, and only available if you have feature 3863,
CPACF DES/TDES Enablement installed. The IBM z14 and IBM z14 ZR1 can support a maximum of 16
adapters. Each adapter code has one hardware adapter which can be configured as a CCA coprocessor,
a PKCS #11 coprocessor, or an accelerator.

• Feature code 0890, Crypto Express5 adapter - optional, and only available if you have feature 3863,
CPACF DES/TDES Enablement installed. The IBM z14 and IBM z14 ZR1 can support a maximum of 16
adapters. Each feature code has one hardware feature which can be configured as a CCA coprocessor, a
PKCS #11 coprocessor, or an accelerator.

IBM z13 and IBM z13s
The IBM z13 and IBM z13s provide constraint relief and addresses various customer demands. It has
several cryptographic features.

• CP Assist for Cryptographic Functions is implemented on every processor. SHA-1, SHA-224, SHA-256,
SHA-384 and SHA-512 secure hashing is directly available to application programs.

• Feature code 3863, CP Assist for Cryptographic Functions (CPACF) DES/TDES Enablement - enables
clear key DES and TDES instructions on all CPs. AES 128-bit, AES 192-bit and AES 256-bit support is
also available.

• Feature code 0890, Crypto Express5 adapter - optional, and only available if you have feature 3863,
CPACF DES/TDES Enablement installed. The IBM z13s can support a maximum of 16 adapters. Each
feature code has one hardware feature which can be configured as a CCA coprocessor, a PKCS #11
coprocessor, or an accelerator.

IBM zEnterprise EC12 (zEC12) and IBM zEnterprise BC12 (zBC12)
The IBM zEnterprise EC12 and IBM zEnterprise BC12 provide constraint relief and addresses various
customer demands. It has several cryptographic features.

• CP Assist for Cryptographic Functions is implemented on every processor. SHA-1, SHA-224, SHA-256,
SHA-384 and SHA-512 secure hashing is directly available to application programs.

• Feature code 3863, CP Assist for Cryptographic Functions (CPACF) DES/TDES Enablement - enables
clear key DES and TDES instructions on all CPs. AES 128-bit, AES 192-bit and AES 256-bit support is
also available.

• Feature code 0864, Crypto Express3 adapter - optional, and only available if you have feature 3863,
CPACF DES/TDES Enablement installed. The IBM zEnterprise EC12 can support a maximum of 8
adapters. Each feature code has two coprocessors/accelerators.

• Feature code 0865, Crypto Express4 adapter - optional, and only available if you have feature 3863,
CPACF DES/TDES Enablement installed. The IBM zEnterprise EC12 can support a maximum of 16
adapters. Each feature code has one hardware feature which can be configured as a CCA coprocessor, a
PKCS #11 coprocessor, or an accelerator.

Chapter 1. Introduction to z/OS ICSF 3

IBM zEnterprise 196 (z196) and IBM zEnterprise 114 (z114)
The IBM zEnterprise 196 and IBM zEnterprise 114 provide constraint relief and addresses various
customer demands. It has several cryptographic features.

• CP Assist for Cryptographic Functions is implemented on every processor. SHA-1, SHA-224, SHA-256,
SHA-384 and SHA-512 secure hashing is directly available to application programs.

• Feature code 3863, CP Assist for Cryptographic Functions (CPACF) DES/TDES Enablement – enables
clear key DES and TDES instructions on all CPs. AES 128-bit, AES 192-bit and AES 256-bit support is
also available.

• Feature code 0864, Crypto Express3 adapter – optional, and only available if you have feature 3863,
CPACF DES/TDES Enablement installed. The IBM zEnterprise 196 and IBM zEnterprise 114 can support
a maximum of 8 adapters. Each feature code has two coprocessors/accelerators.

IBM System z10 Enterprise Class (z10EC) and IBM System z10 Business Class (z10
BC)
The IBM System z10 Enterprise Class and IBM System z10 Business Class provide constraint relief and
addresses various customer demands. It has several cryptographic features.

• CP Assist for Cryptographic Functions is implemented on every processor. SHA-1, SHA-224, SHA-256,
SHA-384 and SHA-512 secure hashing is directly available to application programs.

• Feature code 3863, CP Assist for Cryptographic Functions (CPACF) DES/TDES Enablement – enables
clear key DES and TDES instructions on all CPs. AES 128-bit, AES 192-bit and AES 256-bit support is
also available.

• Feature code 0863, Crypto Express2 adapter – optional, and only available if you have feature 3863,
CPACF DES/TDES Enablement installed. The z10 EC and z10 BC can support a maximum of 8 adapters.
Each feature code has two coprocessors/accelerators.

• Feature code 0864, Crypto Express3 adapter – optional, and only available if you have feature 3863,
CPACF DES/TDES Enablement installed. The z10 EC and z10 BC can support a maximum of 8 adapters.
Each feature code has two coprocessors/accelerators.

IBM System z9 Enterprise Class (z9 EC) and IBM System z9 Business Class (z9 BC)
The IBM System z9 Enterprise Class (z9 EC) and IBM System z9 BC provide constraint relief and
addresses various customer demands. It has several cryptographic features.

• CP Assist for Cryptographic Functions is implemented on every processor. SHA-1, SHA-224 and
SHA-256 secure hashing is directly available to application programs.

• Feature code 3863, CP Assist for Cryptographic Functions (CPACF) DES/TDES Enablement – enables
clear key DES and TDES instructions on all CPs. In addition, ICSF supports hardware implementation of
AES 128-bit keys and software implementation of AES 192-bit and AES 256-bit key lengths.

• Feature code 0863, Crypto Express2 adapter – optional, and only available if you have feature 3863,
CPACF DES/TDES Enablement installed. The IBM System z9 BC can support a maximum of 8 adapters.
Each feature code has two coprocessors/accelerators.

z/OS ICSF FMIDs
These tables explain the relationships of z/OS releases, ICSF FMIDs and servers.

4 z/OS: z/OS ICSF System Programmer's Guide

Table 1. z/OS ICSF FMIDs

z/OS ICSF FMID Web deliverable name

V2R2

HCR77B0 Enhanced Cryptographic Support for z/OS V1R13 - z/OS V2R1.

HCR77B1 Cryptographic Support for z/OS V1R13 - z/OS V2R2.

HCR77C0 Cryptographic Support for z/OS V2R1 - z/OS V2R2.

HCR77C1 Cryptographic Support for z/OS V2R1 - z/OS V2R3.

HCR77D0 Cryptographic Support for z/OS V2R2 - z/OS V2R3

V2R3

HCR77C0 Cryptographic Support for z/OS V2R1 - z/OS V2R2.

HCR77C1 Cryptographic Support for z/OS V2R1 - z/OS V2R3.

HCR77D0 Cryptographic Support for z/OS V2R2 - z/OS V2R3

Refer to this chart to determine what release is associated with each ICSF FMID and what server it will
run on.

Table 2. FMID and Hardware

ICSF FMID Applicable z/OS Releases Servers where FMID will run

HCR77B0 (Base of z/OS 2.2) 1.13, 2.1, and 2.2 z890, z990, z9 EC, z9 BC, z10 EC, z10
BC, z114, z196, zBC12, zEC12, z13,
z13s, z14, and z14 ZR1.

HCR77B1 1.13, 2.1, and 2.2 z890, z990, z9 EC, z9 BC, z10 EC, z10
BC, z114, z196, zBC12, zEC12, z13,
z13s, z14, and z14 ZR1.

HCR77C0 (Base of z/OS 2.3) 2.1, 2.2, and 2.3 z9 EC, z9 BC, z10 EC, z10 BC, z114,
z196, zBC12, zEC12, z13, z13s, z14,
and z14 ZR1.

HCR77C1 2.1, 2.2, and 2.3 z9 EC, z9 BC, z10 EC, z10 BC, z114,
z196, zBC12, zEC12, z13, z13s, z14,
and z14 ZR1.

HCR77D0 2.2 and 2.3 z9 EC, z9 BC, z10 EC, z10 BC, z114,
z196, zBC12, zEC12, z13, z13s, z14,
and z14 ZR1.

ICSF features
ICSF protects data from unauthorized disclosure or modification. It protects data that is stored within a
system, stored in a file on magnetic tape off a system, and sent between systems. It can also be used to
authenticate identities of senders and receivers and to ensure the integrity of messages transmitted over
a network. It uses cryptography to accomplish these functions.

Cryptography enciphers data, using an algorithm and a cryptographic key, so the data is in an
unintelligible form. Deciphering data involves reproducing the intelligible data from the unintelligible data.
To encipher and decipher data, ICSF uses either the U.S. National Institute of Science and Technology
Data Encryption Standard (DES) algorithm, Advanced Encryption Standard (AES), Elliptic Curve
Cryptography (ECC) or the RSA algorithm.

ICSF supports several Public Key Algorithms (PKA), which do not require exchanging a secret key. You can
use these algorithms to exchange AES or DES secret keys securely and to compute digital signatures for
authenticating messages and users. For digital signatures, you use a pair of keys: a private (secret) key to

Chapter 1. Introduction to z/OS ICSF 5

sign a message and a corresponding public key to verify the signature. ICSF supports the RSA, and ECC
algorithms.

You can call an ICSF callable service from an application program to perform a cryptographic function.
ICSF uses keys in cryptographic functions to:

• Protect data
• Protect other keys
• Verify that messages were not altered between sender and receiver
• Generate, protect, and verify personal identification numbers (PINs)
• Distribute AES and DES keys
• Generate and verify digital signatures

You use ICSF callable services and programs to generate, maintain, and manage keys that are used in the
cryptographic functions. A unique key performs each type of cryptographic function on ICSF. All secret
keys are encrypted under another key, a master key or a wrapping key. There are up to four CCA master
keys depending on your cryptographic coprocessors: DES, RSA, AES and ECC. All master keys are
physically secure within the boundary of the cryptographic coprocessors. Operational secret keys are
encrypted under their respective master key.

The P11 master key is used to protect secure PKCS #11 keys. Secure PKCS #11 keys are supported only
on features configured for PKCS #11. The P11 master key is physically secure within the boundary of the
coprocessors.

The Cryptographic Key Data Set (CKDS)
Cryptographic keys that are protected under the DES or AES master key are stored in a VSAM data set that
is called the cryptographic key data set (CKDS). ICSF provides sample CKDS allocation jobs (members
CSFCKDS, CSFCKD2, and CSFCKD3) in SYS1.SAMPLIB. An installation is not required to define a CKDS.
However, when a CKDS is not defined, secure CCA symmetric key functions are not available and ICSF
cannot be used to manage CCA symmetric key tokens. The CKDS contains individual entries for each key
that is added to it. You can store all types of operational symmetric keys in the CKDS. Each record in the
data set contains the key value encrypted under the master key and other information about the key. ICSF
maintains two copies of the CKDS: a disk copy and an in-storage copy.

Callable services use the in-storage copy of the CKDS to perform cryptographic functions. For information
on managing and sharing the CKDS in a sysplex environment, see z/OS Cryptographic Services ICSF
Administrator's Guide.

Applications can use the dynamic CKDS update callable services to create, write, read, and delete CKDS
records.

There are three formats of the CKDS:

• A fixed-length record format with LRECL=252 (supported by all releases of ICSF). Sample is CSFCKDS.
• A variable-length record format with LRECL=1024 (supported by HCR7780 and later releases). Sample

is CSFCKD2.
• The common record format (KDSR) that is common to all key data sets with LRECL=2048 (supported by

ICSF FMID HCR77A1 and later). Sample is CSFCKD3.

You should use the most current format, the common record format (KDSR), for all your key data sets
because KDSR format supports additional function to manage cryptographic keys. For information on
converting your existing CKDS to KDSR format, see “Migrating to the common record format (KDSR) key
data set” on page 83.

If variable-length AES and HMAC keys are to be stored in the CKDS, you must use the variable-length or
KDSR format of the CKDS. These formats can store all symmetric key tokens, both fixed-length and
variable-length tokens. The KDSR format allows ICSF to track key usage if so configured.

6 z/OS: z/OS ICSF System Programmer's Guide

The Public Key Data Set (PKDS)
RSA and ECC public and private keys and trusted blocks can be stored in a VSAM data set that is called
the public key data set (PKDS). ICSF provides sample PKDS allocation jobs (member CSFPKDS) in
SYS1.SAMPLIB. An installation is not required to define a PKDS. However, when a PKDS is not defined,
secure CCA asymmetric key functions are not available and ICSF cannot be used to manage CCA
asymmetric key tokens. The PKDS contains individual entries for each key that is added to it. You can
store public key tokens, both external and internal private key tokens, and trusted blocks in the PKDS.
ICSF maintains two copies of the PKDS: a disk copy and an in-storage copy.

Callable services use the in-storage copy of the PKDS to perform cryptographic functions. For information
on managing and sharing the PKDS in a sysplex environment, see z/OS Cryptographic Services ICSF
Administrator's Guide.

Applications can use the dynamic PKDS update callable services to create, write, read, and delete PKDS
records.

There are two formats of the PKDS: the PKDS record format (supported by all releases of ICSF) and the
common record format (KDSR) that is common to all key data sets (supported by ICSF FMID HCR77A1
and later). The KDSR format allows ICSF to track key usage if so configured.

You should use the most current format, the common record format (KDSR), for all your key data sets
because KDSR format supports additional function to manage cryptographic keys. For information on
converting your existing PKDS to KDSR format, see “Migrating to the common record format (KDSR) key
data set” on page 83.

The Token Data Set (TKDS)
PKCS #11 tokens and objects are stored in a VSAM data set called the token data set (TKDS). ICSF
provides sample TKDS allocation jobs (members CSFTKDS and CSFTKD2) in SYS1.SAMPLIB. The TKDS
contains individual entries for each token and object that is added to it. ICSF maintains two copies of the
TKDS: a disk copy and an in-storage copy. Only token objects are stored in the TKDS. Session objects
(which are not persistent) are stored in memory only.

The TKDS must be a key-sequenced data set with spanned variable length records and must be allocated
on a permanently resident volume. It is recommended that the TKDS is cataloged in the master catalog.
For information on managing and sharing the TKDS in a sysplex environment, see z/OS Cryptographic
Services ICSF Administrator's Guide.

The TKDS is optional for installations that do not use PKCS #11 services or for installations that use only
clear session (non-persistent) PKCS #11 keys.

There are two formats of the TKDS: the TKDS record format (supported by all releases of ICSF), and the
common record format (KDSR) that is common to all KDS types (supported by ICSF FMID HCR77A1 and
later). KDSR allows ICSF to track key usage if so configured.

You should use the most current format, the common record format (KDSR), for all your key data sets
because KDSR format supports additional function to manage cryptographic keys. For information on
converting your existing TKDS to KDSR format, see “Migrating to the common record format (KDSR) key
data set” on page 83.

Additional background information
These topics provide some additional background information about using ICSF with other products, such
as the Programmed Cryptographic Facility (PCF).

Running PCF applications on z/OS ICSF
If your installation uses PCF, you can run PCF applications on ICSF. You can use an installation option to
specify whether a PCF application runs on ICSF. If you are migrating from PCF, ICSF provides a conversion
program that converts a PCF CKDS to ICSF format.

Chapter 1. Introduction to z/OS ICSF 7

You can use your own installation services and exits to customize ICSF. You can write, define, and call
your own installation-defined callable service. You can also write and define exits that ICSF calls during
the processing of:

• ICSF mainline
• A callable service
• The PCF CKDS conversion program
• The key generator utility program
• CKDS access

For example, most callable services in ICSF call an exit before and after processing. Such an exit can alter
return codes in a service.

ICSF System SVC 143

SVC 143 (0A8F) is an ICSF system SVC that is used by CUSP and PCF macros (GENKEY, RETKEY, CIPHER,
and EMK) for SVC entry into ICSF. The SVC allows you to run a CUSP or PCF application on ICSF. See
“Running PCF and z/OS ICSF on the same system” on page 219 for more information about running CUSP
and PCF applications on ICSF.

SVC 143 is a type 4 SVC and does not get a lock. The General Trace Facility data is:
R15 and R0

No applicable data.
R1

Address of the parameter list. The macro that is called determines the parameter list.

Using RMF and SMF to monitor z/OS ICSF events
You can run ICSF in different configurations and use installation options to affect ICSF performance. While
ICSF is running, you can use the Resource Management Facilities (RMF) and System Management
Facilities (SMF) to monitor certain events. For example, ICSF records information in the SMF data set
when ICSF changes the status of a cryptographic processor or when you enter or change the master key.
ICSF also sends information and diagnostic messages to data sets and consoles.

With the availability of cryptographic hardware on an LPAR basis, RMF provides performance monitoring
in the Postprocessor Crypto Hardware Activity report. This report is based on SMF record type 70, subtype
2. The Monitor I gathering options on the REPORTS control statement are CRYPTO and NOCRYPTO.
Specify CRYPTO to measure cryptographic hardware activity and NOCRYPTO to suppress the gathering. In
addition, overview criteria is shown for the Postprocessor in the Postprocessor Workload Activity Report -
Goal Mode (WLMGL) report. Refer to z/OS RMF Programmer's Guide, z/OS RMF User's Guide, and z/OS RMF
Report Analysis for additional information.

ICSF also supports enabling RMF to provide performance measurements on ICSF services (Decipher,
Digital Signature Generate, Digital Signature Verify, Encipher, FPE Decipher, FPE Encipher, FPE Translate,
MAC Generate, MAC Verify, One Way Hash, PIN Translate, and PIN Verify). These measurements are of the
PCIXCCs or Crypto Express coprocessors.

For diagnosis monitoring, use Interactive Problem Control System (IPCS) to access the trace buffer and to
format control blocks.

Controlling access to ICSF
For security, you should control access to ICSF resources and services. Use a security product like the
Security Server (RACF) to protect cryptographic programs, keys, and services. You should also change the
value of your master keys periodically.

8 z/OS: z/OS ICSF System Programmer's Guide

Steps prior to starting installation
You use either ServerPac or CBPDO to install ICSF as part of the z/OS installation process.

When beginning installation:

1. Refer to z/OS Planning for Installation for installation planning information.
2. Check with your IBM center or search the IBM problem database to find any pertinent Preventative

Service Planning (PSP). There may also be HOLDDATA and PSP information for ICSF on the tape.
3. Make sure that you have all needed programs and their corequisites:

• If you use the Security Sever (RACF) and want access control and auditing services for ICSF, you
need the Security Server (RACF), an optional feature of z/OS.

• If you are a Resource Measurement Facility (RMF) user, you need the Resource Measurement Facility
option available with z/OS.

4. Collect all required information. The Program Directory lists publications useful during installation.
5. Confirm you have adequate DASD storage and create SMP/E DDDEF entries for each data set. See the

Program Directory for details.

Chapter 1. Introduction to z/OS ICSF 9

10 z/OS: z/OS ICSF System Programmer's Guide

Chapter 2. Installation, initialization, and
customization

For this topic, you need to understand these terms:
Installation options

You create an installation options data set that specifies these options. They become active when you
start ICSF, customizing how ICSF runs on your system.

Startup procedure
You create an ICSF startup procedure. Along with other information, this specifies the name of the
installation options data set.

SYS1.SAMPLIB
Contains samples, including an installation options data set, a CKDS allocation job, a PKDS allocation
job, a startup procedure, a CICS Wait List data set, and sample JCL for SMP/E Delivery to load keys by
using a pass phrase. You can update this code as necessary and generally store the updated code in
SYS1.PARMLIB and SYS1.PROCLIB.

SYS1.PARMLIB
Generally contains the installation options data set. The installation options data set can alternately
be a member of a partitioned or sequential data set.

SYS1.PROCLIB
Contains the startup procedure.

Steps for installation and initialization
Refer to the z/OS Program Directory for installation instructions. Several of the installation steps in the
z/OS Program Directory refer you to this publication for details. This publication explains these installation
steps.

Note: Because it is possible for ICSF control blocks like the DACC and CCVT to persist in storage across an
ICSF restart, an IPL is required when installing a new release of ICSF.

1. Customize SYS1.PARMLIB. “Steps to customize SYS1.PARMLIB” on page 12 describes this task.
2. • If the installation will define a CKDS, see “Creating the CKDS” on page 13 to create the

Cryptographic Key Data Set (CKDS). “Steps to create the CKDS” on page 14 describes the steps.
• If the installation will define a PKDS, see “Creating the PKDS” on page 17 to create the Public Key

Data Set (PKDS). “Steps to create the PKDS” on page 18 describes the steps.
• If the installation will define a TKDS, see “Creating the TKDS” on page 19 to create the Token Data

Set (TKDS). “Steps to create the TKDS” on page 20 describes the steps.
3. If PKCS #11 support is desired, create the TKDS. “Steps to create the TKDS” on page 20 describes

this task.
4. Create the installation options data set. “Steps to create the installation options data set” on page 23

describes this task.
5. Create the startup procedure. “Steps to create the ICSF startup procedure” on page 27 describes this

task.
6. Provide access to the ICSF panels. “Steps to provide access to the ICSF panels” on page 29

describes this task.

Note: You only need to perform the first six steps once.
7. Start ICSF for the first time. See “Steps to start ICSF for the first time” on page 31. Once ICSF has

been started, Master Keys can be entered.

© Copyright IBM Corp. 2007, 2021 11

For additional information on ICSF first time startup, refer to “Checklist for first-time startup of ICSF”
on page 425. See z/OS Cryptographic Services ICSF Administrator's Guide for directions on entering
Master Keys.

8. Enter Master Keys.

Other topics in this publication and z/OS Cryptographic Services ICSF Administrator's Guide provide
additional installation information.

For information on installing the CICS-ICSF Attachment Facility, refer to Appendix C, “CICS-ICSF
Attachment Facility,” on page 421.

Steps to customize SYS1.PARMLIB
The installation options data set you will create is generally stored in SYS1.PARMLIB. If your administrator
does not have access to SYS1.PARMLIB, you need to use another data set instead.

Update the data set you are using as follows:

1. Add CEE.SCEERUN, CSF.SCSFMOD0, and CSF.SCSFSTUB to the LNKLST concatenation. This adds the
ICSF library to the z/OS library search. This is an example of an ICSF entry to the LNKLST
concatenation.

CSF.SCSFMOD0

2. APF authorize CSF.SCSFMOD0 and CSF.SCSFSTUB, if LNKAUTH=APFTAB. This is an example of an
ICSF entry for APF authorization.

APF ADD DSNAME(CSF.SCSFMOD0) VOLUME(******)

3. In the IKJTSOxx parameter, add CSFDAUTH and CSFDPKDS as a value in the AUTHPGM parameter list
and in the AUTHTSF parameter list. This is an example of an ICSF entry in the IKJTSOxx member.

AUTHPGM NAMES(/* AUTHORIZED PROGRAMS */ +

CSFDAUTH /* ICSF */ +
CSFDPKDS /* ICSF */ +

AUTHTSF NAMES(/* PROGRAMS TO BE AUTHORIZED WHEN */ +
 /* WHEN CALLED THROUGH THE TSO */ +
 /* SERVICE FACILITY */ +

CSFDAUTH /* ICSF */ +
CSFDPKDS /* ICSF */

4. If your application programmers intend to use PKCS #11 token key objects for AES Galois/Counter
Mode (GCM) encryption or GMAC generation and have ICSF generate the initialization vectors, then
you need to ensure that the first four bytes of the sysplex names (from parmlib member COUPLExx)
and the first four bytes of the system name (from the SYSNAME parameter in the IEASYSxx parmlib
member) are unique within the scope of the systems that will be sharing these tokens. z/OS currently
does not impose any restrictions on uniqueness between sysplex names and system names. Eight
character system names have to be unique within a sysplex. ICSF requires that the first four bytes are
unique, but this is not enforced by the z/OS operating system.

This needs to be done because, for AES GCM encryption or GMAC generation, the security of the
algorithm is dependent on never repeating a key, initialization vector combination for two or more
distinct sets of data. In PKCS #11, applications can request that ICSF generate a new (unique)
initialization vector each time AES GCM or GMAC is initiated. In fact, this is the only permitted way to
perform AES GCM or GMAC when PKCS #11 is operating in FIPS mode. When ICSF generates
initialization vectors, it uses the ECVTSPLX (sysplex mode) or CVTSNAME (non-sysplex mode) field as
the cryptographic module name. The name ensures uniqueness if such keys are distributed to multiple
systems, but only if each system is set with a unique name.

12 z/OS: z/OS ICSF System Programmer's Guide

When setting ECVTSPLX or CVTSNAME to unique values, be aware that ICSF uses only the first (left
most) 4 characters of these fields. For this reason, these 4 characters must be set to uniquely identify
the system.

For example, suppose AES key value 123 is created on the current single-image system (known as
System A) and is distributed to another system residing in a Sysplex (known as Sysplex B). Both
systems will be performing GCM encryption where ICSF generates the initialization vectors. To ensure
that unique initialization vectors are generated, set CVTSNAME=SYSA on System A and
ECVTSPLX=PLXB on Sysplex B.

CVTSNAME is normally set from the SYSNAME=value statement in the IEASYSxx member of
"SYS1.PARMLIB". For more information, see z/OS MVS Initialization and Tuning Reference.

ECVTSPLX is normally set from the COUPLE SYSPLEX(value) in the COUPLExx member of
"SYS1.PARMLIB". For more information, see z/OS MVS Setting Up a Sysplex.

Note:

1. If you will be using the TKE workstation on this host, you should also add CSFTTKE as a value in the
AUTHCMD parameter list.

2. To change the active IKJTSOxx member of SYS.PARMLIB without an IPL, use the PARMLIB UPDATE
command.

z/OS MVS Initialization and Tuning Guide and z/OS MVS Initialization and Tuning Reference provide more
information.

Creating the CKDS
Installations need to understand and plan for the system resources required for managing the CKDS copy
in virtual storage, particularly when the installation is deploying a very large CKDS. Refer to “ICSF system
resource planning for the CKDS” on page 13 for guidelines. Once you understand these guidelines, refer
to “Steps to create the CKDS” on page 14 for step-by-step instructions.

ICSF system resource planning for the CKDS
Like the PKDS and TKDS, ICSF manages a mirror copy of the CKDS data set in protected, private virtual
storage to optimize cryptographic workload access to symmetric keys in the normal course of workload
operation. This copy is kept current as keys are dynamically added to, and removed from, the active CKDS
key store. Like any set of control information that is maintained in virtual storage, the in-storage CKDS
copy must be accommodated with sufficient system central storage and auxiliary paging space resources.

Installations need to understand and plan for the system resources that are required for managing the
CKDS copy in virtual storage, particularly when the installation is deploying a large CKDS. Note that “very
large” is a relative assessment depending upon the installation, and might be expressed, for example, in
terms of tens or hundreds of thousands of symmetric keys in the CKDS, or even millions of keys.

An in-storage copy of a CKDS that is not experiencing significant dynamic key creation or deletion activity
consumes a stable amount of virtual storage, and therefore a stable amount of system backing resource.
However, certain occasional but unavoidable ICSF functions such as CKDS refresh do generate a
significant spike in the amount of used virtual storage, and therefore a greater temporary demand for
system resources backing that virtual storage.

Given these circumstances, it is important to calculate and plan for the system central storage and
auxiliary paging space that is required to support an active in-storage copy. For a CKDS shared across a
sysplex environment, every active ICSF in the sysplex has an equivalent resource requirement.

Each symmetric key in the CKDS is managed with one VSAM record. Installations need to plan for the
appropriate amount of combined central storage and auxiliary paging space for each VSAM record, per
active ICSF. The following formula is provided to help you calculate the required system virtual storage
backing resource for an active in-storage CKDS. In this formula HI-A-RBA is the allocated relative byte
address for the data component of a CKDS VSAM data set. The IDCAMS LISTCAT command output for a
CKDS VSAM data set can be consulted to determine the HI-A-RBA value for the data component. The

Chapter 2. Installation, initialization, and customization 13

%Free Space used in this formula represents the percentage of free space in the CKDS VSAM data set.
The IDCAMS EXAMINE DATATEST command output can be consulted to determine the percentage of free
space.

HI-A-RBA x ((100 - %Free Space) / 100) x 6

For example, the central storage and auxiliary paging space requirement for a CKDS VSAM data set with a
HI-A-RBA of 481,787,904 for its data component entry and 16 percent free space can be calculated as
follows.

481,787,904 x ((100 - 16) / 100) x 6 = 2,428,211,036.16 bytes

This CKDS VSAM data set requires 2.26 Gigabytes of combined central storage and auxiliary paging space
for system backing resource.

As is the case with all virtual storage usage, central storage is the preferred medium to optimize the
workload performance, and to avoid system paging overhead. Excessive system paging due to any virtual
storage usage can cause degradation across the workload and system operation, and an extreme
shortage of central storage and auxiliary paging space can lead to a catastrophic system failure.

Note: The output from the preceding formulas should be added to the outputs calculated from the
formulas in “ICSF system resource planning for the PKDS” on page 17 and “ICSF system resource
planning for the TKDS and session object memory areas” on page 19. This gives you the required system
virtual storage backing resource for all of ICSF’s KDS data sets. This value represents the required amount
of virtual storage for a given instance of ICSF. For a set of KDS data sets shared across a sysplex
environment, every active ICSF in the sysplex has an equivalent resource requirement.

Additional CKDS performance considerations
IBM recommends that installations that deploy a fixed-length format CKDS with millions of symmetric
keys do not enable CKDS MAC authentication or disable it if it is already enabled. CKDS MAC
authentication adds an additional coprocessor request for each VSAM data set read/write operation.
There is a significant performance implication for CKDS MAC authentication that would be greatly
magnified with such a large CKDS.

Steps to create the CKDS
The CKDS must be a key-sequenced data. There are three formats:

• A fixed length record format with LRECL=252.
• A variable length record format with LRECL=1024.
• The common record format (KDSR) which is common to all key data sets with LRECL=2048.

Allocate the CKDS on a permanently resident volume. It is recommended that the CKDS is cataloged in
the master catalog.

Attention: Ensure that this volume is not subject to data set migration. If the CKDS is migrated, message
CSFM450E is issued and ICSF ends.

For detailed information about calculating space for a VSAM data set and an explanation of keyed-direct
update processing and what happens when control area and control interval splits occur, see z/OS DFSMS
Access Method Services Commands.

1. Determine the amount of primary space you need to allocate for the CKDS. This should reflect the total
number of entries you expect the data set to contain originally. Besides transport keys, PIN keys, data-
encrypting keys, data-translating keys, and MAC keys, the CKDS contains a header record and system
keys. ICSF no longer uses the system keys as of ICSF FMID HCR77A1, but they remain for older
releases which may share the CKDS.
Fixed length record format:

Each record is 252 bytes long. Allocate space for all of the installation and system keys you expect
to store in the CKDS.

14 z/OS: z/OS ICSF System Programmer's Guide

Variable length record format:
The minimum size of a record will be 276 bytes. Records containing fixed-length DES and AES keys
will be 332 bytes long. Records containing variable-length symmetric key tokens may be up to 993
bytes long. Allocate space for all of the installation and system keys you expect to store in the
CKDS.

KDSR format:
The minimum size of a record will be 188 bytes. Records containing fixed-length DES and AES keys
will be 244 bytes long or 300 bytes long if the original record had user data. Records containing
variable-length symmetric key tokens may be up to 905 bytes long. In addition, installations may
add metadata to any record. If you are planning to add metadata, account for the size of the
metadata in the length of records. Allocate space for all of the installation and system keys you
expect to store in the CKDS.

2. Determine the amount of secondary space to allocate for CKDS. This should reflect the total number of
entries you expect to add to the data set.

To access keys, VSAM uses the key label as the VSAM key. This means that VSAM adds keys to the data
set in collating sequence. That is, if two keys named A and B are in the data set, A appears earlier in
the data set than B. As a result, adding keys to the data set can cause multiple VSAM control interval
splits and control area splits. For example, a split might occur if the data set contains keys A, B, and E
and you add C. In this case, C must be placed between B and E. These splits can leave considerable
free space in the data set and can affect KGUP performance.

The amount of secondary space you allocate must take into account the number of control interval and
control area splits that might occur. If the disk copy of the CKDS uses a significant amount of
secondary space, you can copy it into another disk copy that you created with more primary space. You
can do this by using the Access Method Services (AMS) REPRO command or the AMS EXPORT/IMPORT
commands.

The BUFFERSPACE parameter on the AMS DEFINE CLUSTER command (required by Step “3” on page
15) lets VSAM optimize space for control area and control interval splits.

3. Create an empty VSAM data set to use as the CKDS. ICSF provides a sample job to define the CKDS in
member CSFCKDS of SYS1.SAMPLIB.

Use the AMS DEFINE CLUSTER command to define the data set and to allocate its space.

Note: To improve security and reliability of the data that is stored on the CKDS:

• Use the ERASE parameter on the AMS DEFINE CLUSTER command. ERASE overwrites data records
with binary zeros when the CKDS cluster is deleted. initializing ICSF

• Create a Security Server (RACF) data set profile for the CKDS. Ensure that no one has access to the
CKDS data set by protecting the CKDS data set name resource in the DATASET class. If a data set
profile is used, as opposed to using the PROTECTALL(FAIL) option for example, the profile should
have a UACC of NONE.

Fixed length record format:
Allocate a disk copy of the CKDS by defining a VSAM cluster as in this SYS1.SAMPLIB CSFCKDS
member sample:

//CSFCKDS JOB <JOB CARD PARAMETERS>
//**
//* Licensed Materials - Property of IBM *
//* 5650-ZOS *
//* Copyright IBM CORP. 2002, 2015 *
//* *
//* This JCL defines a VSAM CKDS capable only of fixed-length records*
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Be sure to change CSF to the appropriate HLQ if you choose *
//* not to use the default. *
//* 3) Change XXXXXX to the volid where you want your CKDS to *
//* reside. The CKDS needs to be on a permanently resident *

Chapter 2. Installation, initialization, and customization 15

//* volume. *
//* *
//* NOTE: This JCL is specific for creating a CKDS capable of only *
//* fixed-length records. There are samples for each of the *
//* other key data sets and formats. *
//* *
//**
//DEFINE EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE CLUSTER (NAME(CSF.CSFCKDS) -
 VOLUMES(XXXXXX) -
 RECORDS(100 50) -
 RECORDSIZE(252,252) -
 KEYS(72 0) -
 FREESPACE(10,10) -
 SHAREOPTIONS(2)) -
 DATA (NAME(CSF.CSFCKDS.DATA) -
 BUFFERSPACE(100000) -
 ERASE) -
 INDEX (NAME(CSF.CSFCKDS.INDEX))
/*

Variable length record format:
Allocate a disk copy of the CKDS by defining a VSAM cluster as in this SYS1.SAMPLIB CSFCKD2
member sample:

//CSFCKD2 JOB <JOB CARD PARAMETERS>
//**
//* Licensed Materials - Property of IBM *
//* 5650-ZOS *
//* Copyright IBM CORP. 2010, 2013 *
//* *
//* This JCL defines a VSAM CKDS capable of variable-length records *
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Be sure to change CSF to the appropriate HLQ if you choose *
//* not to use the default. *
//* 3) Change XXXXXX to the volid where you want your CKDS to *
//* reside. The CKDS needs to be on a permanently resident *
//* volume. *
//* *
//* NOTE: This JCL is specific for creating a CKDS capable of *
//* variable-length records, in non-KDSR format. There are *
//* samples for each of the other key data sets and formats. *
//* *
//**
//DEFINE EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE CLUSTER (NAME(CSF.CSFCKDS) -
 VOLUMES(XXXXXX) -
 RECORDS(100 50) -
 RECORDSIZE(332,1024) -
 KEYS(72 0) -
 FREESPACE(10,10) -
 SHAREOPTIONS(2,3)) -
 DATA (NAME(CSF.CSFCKDS.DATA) -
 BUFFERSPACE(100000) -
 ERASE) -
 INDEX (NAME(CSF.CSFCKDS.INDEX))
/*

KDSR record format:
Allocate a disk copy of the CKDS by defining a VSAM cluster as in this SYS1.SAMPLIB CSFCKD3
member sample:

//CSFCKD3 JOB <JOB CARD PARAMETERS>
//**
//* Licensed Materials - Property of IBM *
//* 5650-ZOS *
//* Copyright IBM CORP. 2013 *
//* *
//* This JCL defines a VSAM CKDS capable of variable-length records *

16 z/OS: z/OS ICSF System Programmer's Guide

//* in common record format *
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Be sure to change CSF to the appropriate HLQ if you choose *
//* not to use the default. *
//* 3) Change XXXXXX to the volid where you want your CKDS to *
//* reside. The CKDS needs to be on a permanently resident *
//* volume. *
//* *
//* NOTE: This JCL is specific for creating a CKDS capable of *
//* variable-length records, in KDSR format. There are *
//* samples for each of the other key data sets and formats. *
//* *
//**
//DEFINE EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE CLUSTER (NAME(CSF.CSFCKDS) -
 VOLUMES(XXXXXX) -
 RECORDS(100 50) -
 RECORDSIZE(372,2048) -
 KEYS(72 0) -
 FREESPACE(10,10) -
 SHAREOPTIONS(2,3)) -
 DATA (NAME(CSF.CSFCKDS.DATA) -
 BUFFERSPACE(100000) -
 ERASE) -
 INDEX (NAME(CSF.CSFCKDS.INDEX))
/*

You can change and use the Job Control Language according to the needs of your installation. Note
that the JCL to define the CKDS differs from the JCL that defines the PKDS (RECORDSIZE and CISZ
parameters). For more information about allocating a VSAM data set, see z/OS DFSMS Access Method
Services Commands.

Creating the PKDS
Installations need to understand and plan for the system resources required for managing the PKDS copy
in virtual storage, particularly when the installation is deploying a very large PKDS. Refer to “ICSF system
resource planning for the PKDS” on page 17 for guidelines. Once you understand these guidelines, refer
to “Steps to create the PKDS” on page 18 for step-by-step instructions.

ICSF system resource planning for the PKDS
Like the CKDS and TKDS, ICSF manages a mirror copy of the PKDS data set in protected, private virtual
storage to optimize cryptographic workload access to asymmetric keys. Again, similar to the CKDS, the in-
storage PKDS copy must be accommodated with sufficient system central storage and auxiliary paging
space resources. The same formula that is used in the system resource planning section for the CKDS can
be used to estimate the virtual storage requirement for an existing, stable PKDS (one that is not
experiencing significant dynamic asymmetric key creation or deletion activity).

HI-A-RBA x ((100 - %Free Space) / 100) x 6

As described in “ICSF system resource planning for the CKDS” on page 13, the output from running the
IDCAMS LISTCAT and EXAMINE DATATEST commands against a PKDS VSAM data set can be consulted to
determine the data set's data component HI-A-RBA and the percentage of free space in the data set.

Note: The output from the preceding formula should be added to the outputs calculated from the
formulas in “ICSF system resource planning for the CKDS” on page 13 and “ICSF system resource
planning for the TKDS and session object memory areas” on page 19. This gives you the required system
virtual storage backing resource for all of ICSF’s KDS data sets. This value represents the required amount
of virtual storage for a given instance of ICSF. For a set of KDS data sets shared across a sysplex
environment, every active ICSF in the sysplex has an equivalent resource requirement.

Chapter 2. Installation, initialization, and customization 17

Steps to create the PKDS
The PKDS must be allocated and the PKDS data set name must be specified on the PKDSN parameter of
the options data set when you first start ICSF.

The PKDS must be a key-sequenced data set with variable length records. Allocate the PKDS on a
permanently resident volume. It is recommended that the PKDS is cataloged in the master catalog.

1. Determine the amount of primary space you need to allocate for the PKDS.

This should reflect the total number of entries you expect the data set to contain originally. The PKDS
will contain both public and private PKA keys. Each record has a maximum size of 3.5 KB. The average
record length for a private key is 1.4 KB, and for a public key is 0.5 KB. Allocate space for a minimum of
two private keys, one for digital signatures, and another for encipherment. In addition, allocate enough
space for the number of public keys you expect to store in the PKDS. The number of public keys varies
from system to system. Generally, only those keys that are received from other users or systems are
stored in the PKDS. The public keys are used to send messages to the owners of the public keys. In
addition, installations may add metadata to any record. If you are planning to add metadata, account
for the size of the metadata in the length of records.

2. Determine the amount of secondary space to allocate for the PKDS.

This should reflect the total number of entries you expect to add to the data set. For detailed
information about calculating space for a VSAM data set, see z/OS DFSMS Access Method Services
Commands.

To access keys, VSAM uses the key label as the VSAM key. This means that VSAM adds keys to the data
set in collating sequence. That is, if two keys named A and B are in the data set, A appears earlier in
the data set than B. As a result, adding keys to the data set can cause multiple VSAM control interval
splits and control area splits. For example, a split might occur if the data set contains keys A, B, and E
and you add C. In this case, C must be placed between B and E.

The amount of secondary space you allocate must take into account the number of control interval and
control area splits that might occur. If the PKDS uses a significant amount of secondary space, you can
copy it into another disk copy that you created with more primary space. You can do this by using the
Access Method Services (AMS) REPRO command or the AMS EXPORT/IMPORT commands.

The BUFFERSPACE parameter on the AMS DEFINE CLUSTER command (required by Step “3” on page
18) lets VSAM optimize space for control area and control interval splits. For a detailed explanation of
keyed-direct update processing and what happens when control area and control interval splits occur,
see z/OS DFSMS Access Method Services Commands.

3. Create an empty VSAM data set to use as the PKDS. Use the AMS DEFINE CLUSTER command to
define the data set and to allocate its space. ICSF provides a sample job to define the PKDS in member
CSFPKDS of SYS1.SAMPLIB.

Note: To improve security and reliability of the data that is stored on the PKDS:

• Use the ERASE parameter on the AMS DEFINE CLUSTER command. ERASE overwrites data records
with binary zeros when the PKDS cluster is deleted.

• Create a Security Server (RACF) data set profile for the PKDS. Ensure that no one has access to the
PKDS data set by protecting the PKDS data set name resource in the DATASET class. If a data set
profile is used, as opposed to using the PROTECTALL(FAIL) option for example, the profile should
have a UACC of NONE.

• The CISZ(8192) coded in this sample in the DATA section is a hardcoded requirement.
4. Allocate a disk copy of the PKDS by defining a VSAM cluster as in this SYS1.SAMPLIB CSFPKDS

member sample:

//CSFPKDS JOB <JOB CARD PARAMETERS>
//**
//* Licensed Materials - Property of IBM *
//* 5650-ZOS *
//* Copyright IBM CORP. 2002, 2015 *
//* *
//* This JCL defines a VSAM PKDS *

18 z/OS: z/OS ICSF System Programmer's Guide

//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Be sure to change CSF to the appropriate HLQ if you choose *
//* not to use the default. *
//* 3) Change XXXXXX to the volid where you want your PKDS to *
//* reside. The PKDS needs to be on a permanently resident *
//* volume. *
//* *
//* NOTE: This JCL is specific for creating a PKDS. There are *
//* samples for each of the other key data sets and formats. *
//* *
//**
//DEFINE EXEC PGM=IDCAMS,REGION=64M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE CLUSTER (NAME(CSF.CSFPKDS) -
 VOLUMES(XXXXXX) -
 RECORDS(100 50) -
 RECORDSIZE(800,3800) -
 KEYS(72 0) -
 FREESPACE(0,0) -
 SHAREOPTIONS(2,3)) -
 DATA (NAME(CSF.CSFPKDS.DATA) -
 BUFFERSPACE(100000) -
 ERASE -
 CISZ(8192)) -
 INDEX (NAME(CSF.CSFPKDS.INDEX))
/*

You can change and use the Job Control Language according to the needs of your installation. Note
that the JCL to define the PKDS differs from the JCL that defines the CKDS (RECORDSIZE and CISZ
parameters). For more information about allocating a VSAM data set, see z/OS DFSMS Access Method
Services Commands.

Creating the TKDS
TKDS Installations need to understand and plan for the system resources required for managing the TKDS
copy in virtual storage, particularly when the installation is deploying a very large TKDS. Refer to “ICSF
system resource planning for the TKDS and session object memory areas” on page 19 for guidelines.
Once you understand these guidelines, refer to “Steps to create the TKDS” on page 20 for step-by-step
instructions.

ICSF system resource planning for the TKDS and session object memory
areas
Like the CKDS and PKDS, ICSF manages a mirror copy of the TKDS data set in protected, private virtual
storage to optimize cryptographic workload access to persistent PKCS #11 objects (keys, certificates, and
so on). Also, like the CKDS and PKDS, the in-storage TKDS copy must be accommodated with sufficient
system central storage and auxiliary paging space resources. Unfortunately, the variable length nature of
PKCS #11 objects makes resource estimating for the TKDS difficult. The best way to estimate the virtual
storage requirement for an existing, stable TKDS (one that is not experiencing significant dynamic PKCS
#11 object creation or deletion activity) is to determine the actual size of the used DATA portion of the
TKDS and multiply this by 3. The following formula is provided to help you calculate the required system
virtual storage backing resource for an active in-storage TKDS. In this formula HI-A-RBA is the allocated
relative byte address for the data component of a TKDS VSAM data set. The IDCAMS LISTCAT command
output for a TKDS VSAM data set can be consulted to determine the HI-A-RBA value for the data
component. The %Free Space used in this formula represents the percentage of free space in the TKDS
VSAM data set. The IDCAMS EXAMINE DATATEST command output can be consulted to determine the
percentage of free space.

HI-A-RBA x ((100 - %Free Space) / 100) x 3

Chapter 2. Installation, initialization, and customization 19

For example, if the DATA HI-A-RBA has the value 1622016 with 56% free space, then the virtual storage
requirement estimate would be 1622016 x (44/100) x 6 = 4282122 bytes or 4182 Kilobytes.

In addition to the persistent PKCS #11 objects that are stored in the TKDS, applications can also make
use of temporary (session) objects. These too occupy ICSF protected, private virtual storage and should
be accounted for. However, since these objects are not stored in the TKDS, it is impossible to estimate
their virtual storage requirements without having some knowledge of the applications that are using PKCS
#11. Fortunately, most applications that use PKCS #11 use only a few PKCS #11 session objects and
their storage requirements are already factored into the preceding TKDS estimate. However, some
applications, such as TCP/IP’s IPSec, use session objects exclusively, and can use many of them.
Estimating the virtual storage requirements for these is beyond the scope of this document. Applications
that use PKCS #11 session objects have an overall upper limit of 128 Megabytes per application address
space for session objects.

Note: The output from the preceding formula should be added to the outputs calculated from the
formulas in “ICSF system resource planning for the CKDS” on page 13 and “ICSF system resource
planning for the PKDS” on page 17. This gives you the required system virtual storage backing resource
for all of ICSF’s KDS data sets. This value represents the required amount of virtual storage for a given
instance of ICSF. For a set of KDS data sets shared across a sysplex environment, every active ICSF in the
sysplex has an equivalent resource requirement.

Steps to create the TKDS
To enable applications to create and use persistent PKCS #11 tokens and objects using the PKCS #11
services, the TKDS must be allocated and the TKDS data set name must be specified on the TKDSN
parameter of the options data set when you first start ICSF.

The TKDS must be a key-sequenced data set with variable length records. Allocate the TKDS on a
permanently resident volume. It is recommended that the TKDS is cataloged in the master catalog.

For detailed information about calculating space for a VSAM data set and an explanation of keyed-direct
update processing and what happens when control area and control interval splits occur, see z/OS DFSMS
Access Method Services Commands.

1. Determine the amount of primary space you need to allocate for the TKDS.

This should reflect the total number of entries you expect the data set to contain originally. The TKDS
will contain PKCS #11 tokens and objects. Each record has a maximum size of 32 KB. A record for a
token will use 0.1 KB. The minimum size of a record for objects is: Data: 1 KB, Secret Key: 1.1 KB,
Public Key: 1.5 KB, Private Key: 3.4 KB, Certificate: 1 KB, Domain Parameter: 1.5KB. Allocate enough
space for the number of tokens to be supported and for the number of objects to be created. In
addition, installations may add metadata to any record. If you are planning to add metadata, account
for the size of the metadata in the length of records. Note that session objects are not stored in the
TKDS.

2. Determine the amount of secondary space to allocate for the TKDS.

This should reflect the total number of entries you expect to add to the data set.

To access tokens and objects, VSAM uses the token handle or object handle as the VSAM key. This
means that VSAM adds objects to the data set in collating sequence. That is, if two objects named A
and B are in the data set, A appears earlier in the data set than B. As a result, adding objects to the
data set can cause multiple VSAM control interval splits and control area splits. For example, a split
might occur if the data set contains objects A, B, and E and you add C. In this case, C must be placed
between B and E.

The amount of secondary space you allocate must take into account the number of control interval and
control area splits that might occur. If the TKDS uses a significant amount of secondary space, you can
copy it into another disk copy that you created with more primary space. You can do this by using the
Access Method Services (AMS) REPRO command or the AMS EXPORT/IMPORT commands.

The BUFFERSPACE parameter on the AMS DEFINE CLUSTER command (required by Step “3” on page
21) lets VSAM optimize space for control area and control interval splits.

20 z/OS: z/OS ICSF System Programmer's Guide

3. Create an empty VSAM data set to use as the TKDS. Use the AMS DEFINE CLUSTER command to define
the data set and to allocate its space. ICSF provides a sample job to define the TKDS in member
CSFTKDS of SYS1.SAMPLIB.

Note: To improve security and reliability of the data that is stored on the TKDS:

• Use the ERASE parameter on the AMS DEFINE CLUSTER command. ERASE overwrites data records
with binary zeros when the TKDS cluster is deleted.

• Create a Security Server (RACF) data set profile for the TKDS. Ensure that no one has access to the
TKDS data set by protecting the TKDS data set name resource in the DATASET class. If a data set
profile is used, as opposed to using the PROTECTALL(FAIL) option for example, the profile should
have a UACC of NONE.

4. Allocate a disk copy of the TKDS by defining a VSAM cluster with one of the following samples:

SYS1.SAMPLIB CSFTKDS member sample is used to define a TKDS in non-KDSR format:

//CSFTKDS JOB <JOB CARD PARAMETERS>
//**
//* Licensed Materials - Property of IBM *
//* 5650-ZOS *
//* Copyright IBM CORP. 2007, 2013 *
//* *
//* This JCL defines a VSAM TKDS *
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Be sure to change CSF to the appropriate HLQ if you choose *
//* not to use the default. *
//* 3) Change XXXXXX to the volid where you want your TKDS to *
//* reside. The TKDS needs to be on a permanently resident *
//* volume. *
//* *
//* NOTE: This JCL is specific for creating a TKDS. There are *
//* samples for each of the other key data sets and formats. *
//* *
//**
//DEFINE EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE CLUSTER (NAME(CSF.CSFTKDS) -
 VOLUMES(XXXXXX) -
 RECORDS(100 50) -
 RECORDSIZE(2200,32756) -
 KEYS(72 0) -
 FREESPACE(0,0) -
 SPANNED -
 SHAREOPTIONS(2,3)) -
 DATA (NAME(CSF.CSFTKDS.DATA) -
 BUFFERSPACE(100000) -
 ERASE) -
 INDEX (NAME(CSF.CSFTKDS.INDEX))
/*

SYS1.SAMPLIB CSFTKD2 member sample is used to define a TKDS in KDSR format:

//CSFTKD2 JOB <JOB CARD PARAMETERS>
//**
//* Licensed Materials - Property of IBM *
//* 5650-ZOS *
//* Copyright IBM CORP. 2013 *
//* *
//* This JCL defines a VSAM TKDS which is initialized to use common *
//* record format *
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Be sure to change CSF to the appropriate HLQ if you choose *
//* not to use the default. *
//* 3) Change XXXXXX to the volid where you want your TKDS to *

Chapter 2. Installation, initialization, and customization 21

//* reside. The TKDS needs to be on a permanently resident *
//* volume. *
//* *
//* NOTE: This JCL is specific for creating a TKDS which is *
//* initialized to use common record format. There are *
//* samples for each of the other key data sets and formats. *
//* *
//**
//DEFINE EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE CLUSTER (NAME(CSF.CSFTKDS) -
 VOLUMES(XXXXXX) -
 RECORDS(100 50) -
 RECORDSIZE(2200,32756) -
 KEYS(72 0) -
 FREESPACE(0,0) -
 SPANNED -
 SHAREOPTIONS(2,3)) -
 DATA (NAME(CSF.CSFTKDS.DATA) -
 BUFFERSPACE(100000) -
 ERASE) -
 INDEX (NAME(CSF.CSFTKDS.INDEX))
/*
//*---*
//* Repro header record into the TKDS *
//*---*
//MKHEAD EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD *

//SYSUT2 DD DSN=&&GENTMP,UNIT=SYSDA,DISP=(,PASS),
// DCB=(RECFM=FB,LRECL=156,BLKSIZE=1560),SPACE=(TRK,(1,1))
//SYSIN DD *
 GENERATE MAXFLDS=10,MAXLITS=156
 RECORD FIELD=(20,X'00',,1),
 FIELD=(20,X'00',,21),
 FIELD=(20,X'E3C8C4D900000000000000000000000000000000',,41),
 FIELD=(20,X'00',,61),
 FIELD=(16,X'00000000000000000000000000000000',,81),
 FIELD=(16,X'00000000000000000000000000000000',,97),
 FIELD=(4,X'0000009C',,113),
 FIELD=(16,X'00000000000000000000000000000000',,117),
 FIELD=(20,X'00',,133),
 FIELD=(4,X'00000200',,153)
/*
//REPROKSD EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSDATA DD DSN=*.MKHEAD.SYSUT2,DISP=(OLD,DELETE)
//SYSIN DD *
 REPRO INFILE(SYSDATA) -
 OUTDATASET(CSF.CSFTKDS)
/*

You can change and use the Job Control Language according to the needs of your installation. For more
information about allocating a VSAM data set, see z/OS DFSMS Access Method Services Commands.

ICSF system resource planning for random number generation
Several ICSF callable services support psuedo-random number generation on behalf of system and
application requests. ICSF's random number generation implementation utilizes a minimum virtual
storage footprint of 256 kilobytes. To avoid system paging overhead, installations should plan for 256
kilobytes of central storage to back this footprint. This should be sufficient for most workloads, but for
some workloads that are excessively heavy with multitasking random number generation requests, ICSF
may dynamically extend that footprint 64 kilobytes at a time to optimize random number request
handling.

In some cases, the system or application random number request may require that FIPS (Federal
Information Processing Standards) certified random content be provided. In other cases, FIPS certified
random content is not required. In either case, ICSF may employ one of multiple techniques to derive the
random content. For both FIPS certified random content and for non-FIPS certified random content, the
availability of CCA and/or PKCS #11 coprocessors enables ICSF to derive the random content without
imposing significant CPU overhead on the system. Either type of coprocessor can be exploited for non-

22 z/OS: z/OS ICSF System Programmer's Guide

FIPS certified content, but only a PKCS #11 coprocessor can be used to avoid CPU cycles for FIPS
certified random content.

Installations may wish to plan for CCA and/or PKCS #11 coprocessor availability to avoid potentially
excessive CPU cycles being exhausted on random number content generation.

Steps to create the installation options data set
The installation options data set is a file that you create that contains installation options. It becomes
active when you start ICSF.

• The installation options data set can be a member of PARMLIB or a member of a partitioned data set.
• The format of each record in the data set must be fixed length or fixed block length.
• A physical line in the data set is 80 characters long. The system ignores any characters in positions 72

to 80 of the line.
• A logical line is one or more physical lines. You can group physical lines into a logical line by placing a

comma at the end of the information. Only a comment can appear after the comma. The system ignores
any other information between the comma and column 71.

• Continuation causes the next physical line to append immediately following the comma. The system
removes all leading blanks on the next physical line.

• You can delimit comments by /* and */ and include them anywhere within the text. A comment cannot
span physical records. The system removes comments from a logical line before parsing it. It ignores
physical lines that contain only comments.

• Specify only one option setting or keyword on a logical line. (If you specify more than one, the system
ignores all but the last one on the line. The system reports syntax errors, but the errors do not cause it
to stop interpreting the file.)

ICSF provides a sample installation options data set. The sample data set uses the recommended values
for each option.

1. When you are starting ICSF for the first time:

a. Change the name of the data set on the CKDSN and PKDSN statements to the name of the empty
VSAM datasets you created previously (in Step “3” on page 15 and Step “4” on page 18).

b. For a complete description of options you may want to change after the first start, see “Customizing
ICSF after the first start” on page 33.)

2. Store the updated data set in SYS1.PARMLIB.

Note: For convenience, the installation options data set generally resides in SYS1.PARMLIB. If your
cryptographic administrator does not have update access to SYS1.PARMLIB, store installation options
in another data set, and RACF-protect it.

The sample installation options data set is as follows in SYS1.SAMPLIB: CSFPRM00

/***/
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* */
/* 5650-ZOS */
/* */
/* COPYRIGHT IBM CORP. 1990, 2013 */
/* */
/* THIS IS A SAMPLE OF THE ICSF OPTIONS DATASET */
/* */
/***/
CKDSN(CSF.CSFCKDS)
PKDSN(CSF.CSFPKDS)
COMPAT(NO)
SSM(NO)
CHECKAUTH(NO)
CTRACE(CTICSF00)
USERPARM(USERPARM)
REASONCODES(ICSF)

Chapter 2. Installation, initialization, and customization 23

Note: See “Parameters in the installation options data set” on page 33 for descriptions of these
parameters.

Use of system symbols in the options data set is supported. System symbols can be used as values for
any of the parameters. System symbols must be no more than 8 characters.

Note: ICSF allows the CKDS, PKDS and TKDS data set names to be a maximum of 44 characters with up
to 21 qualifiers. Also, the first character must be alphabetic.

See “Parameters in the installation options data set” on page 33 for additional information.

This example shows how system symbols could be used for the CKDS and PKDS data set names. You
could use a SYS1.PARMLIB(IEASYMxx) file and modify CSFPRM00.

IEASYMxx file could contain:

/*------------------------------------*/
/* SYSTEM SYMBOLS FOR ICSF CRYPTO */
/*------------------------------------*/
SYSDEF
 SYMDEF(&CKDSN001='CSF')
 SYMDEF(&CKDSN002='CSFCKDS')
 SYMDEF(&PKDSN001='CSF')
 SYMDEF(&PKDSN002='CSFPKDS')

CSFPRM00 could be modified as follows.

/***/
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* */
/* 5650-ZOS */
/* */
/* COPYRIGHT IBM CORP. 1990, 2013 */
/* */
/* THIS IS A SAMPLE OF THE ICSF OPTIONS DATASET */
/* */
/***/
CKDSN(&CKDSN001..&CKDSN002)
PKDSN(&PKDSN001..&PKDSN002)
COMPAT(NO)
SSM(NO)
CHECKAUTH(NO)
CTRACE(CTICSF00)
USERPARM(USERPARM)
REASONCODES(ICSF)

This example shows how system symbols could be used for the Regional Cryptographic Server (RCS) port
numbers. You could use a SYS1.PARMLIB(IEASYMxx) file and modify CSFPRM00.

IEASYMxx file could contain:
/*------------------------------------*/
/* SYSTEM SYMBOLS FOR ICSF CRYPTO */
/*------------------------------------*/
SYSDEF
SYMDEF(&RDPORT='1125')

CSFPRM00 could be modified as follows.

/***/
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* */
/* 5650-ZOS */
/* */
/* COPYRIGHT IBM CORP. 2015 */
/* */
/* THIS IS A SAMPLE OF THE ICSF OPTIONS DATASET */
/* */
/***/
CKDSN(CSF.CSFCKDS)
PKDSN(CSF.CSFPKDS)
TKDSN(CSF.CSFTKDS)
COMPAT(NO)
SSM(NO)
CHECKAUTH(NO)
CTRACE(CTICSF00)
USERPARM(USERPARM)

24 z/OS: z/OS ICSF System Programmer's Guide

REASONCODES(ICSF)
REMOTEDEVICE(1,MY.SERVER.DOMAIN.COM,&RDPORT,8)

When the machine or partition is IPLed, specify within the load parameter the
symbol file that should be used. For example, if the previous symbol file was
called IEASYM01, then within the load member, the IEASYM entry might look like
IEASYM(00,01); where 00 denotes the IEASYM00 file (usually the system default)
and 01 denotes the IEASYM01 file.

When the machine or partition is IPLed, specify within the load parameter the symbol file that should be
used. For example, if the previous symbol file was called IEASYM01, then within the load member, the
IEASYM entry might look like IEASYM(00,01); where 00 denotes the IEASYM00 file (usually the system
default) and 01 denotes the IEASYM01 file.

Creating an ICSF CTRACE configuration data set
Starting with ICSF FMID HCR77A1, ICSF CTRACE support has been enhanced to support configurable
ICSF CTRACE options from PARMLIB. During SMP/E install, a default CTICSF00 PARMLIB member is
installed in SYS1.PARMLIB. The CTICSF00 PARMLIB member provides default component trace values for
ICSF. By default, ICSF CTRACE support will trace with the KdsIO, CardIO, RdIO, and SysCall filters using a
2M buffer. Configurable options are commented out within this PARMLIB member to provide examples of
how to turn them on.

Note: Beginning with FMID HCR77A1, ICSF needs to have read access to all data sets in the PARMLIB
concatenation to access the CTRACE parmlib member CTICSF00.

The CTICSF00 PARMLIB member can be used to create customized ICSF CTRACE Configuration Data Sets
in PARMLIB. A customized ICSF CTRACE Configuration Data Set can then be specified in the ICSF Options
Data Set using the new CTRACE option.

For example, CTRACE(CTICSFxx), where xx is any 2 characters that were used when copying the default
CTICSF00 parmlib member.

Component tracing is active when ICSF starts using the trace options defined in the CTICSFxx PARMLIB
member, where 00 is the default. If the specified PARMLIB member is incorrect or absent, ICSF CTRACE
will attempt to use the default CTICSF00 PARMLIB member. If the CTICSF00 PARMLIB member is
incorrect or absent, ICSF CTRACE will perform tracing using an internal default set of trace options. The
operator can specify trace options individually on the TRACE CT command, or can specify the name of a
CTICSFxx PARMLIB member containing the desired trace options. Using a PARMLIB member on the
TRACE CT command can help minimize operator intervention and avoid syntax or keystroke errors.

The contents of the CTICSF00 PARMLIB member, is as follows:

/***START OF SPECIFICATIONS***/
/* */
/* $MAC (CTICSF00) COMP(05101) PROD(CSF): */
/* */
/*01* MACRO NAME: CTICSF00 */
/* */
/*01* DESCRIPTIVE NAME: CTRACE Options for ICSF Startup */
/* */
/*01* COPYRIGHT: */
/* */
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* */
/* 5650-ZOS */
/* */
/* COPYRIGHT IBM CORP. 2015 */
/* */
/* STATUS = HCR77B1 */
/* */
/*01* FUNCTION: */
/* Define the default ICSF CTRACE options */
/* */
/*01* COMPONENT: 05101 (CSF) */
/* */
/*01* DISTRIBUTION LIBRARY: PARMLIB */
/* */
/***END OF SPECIFICATIONS***/
TRACEOPTS
/*---*/

Chapter 2. Installation, initialization, and customization 25

/* ON OR OFF: PICK 1 */
/*---*/
 ON
/* OFF */
/*---*/
/* ASID: 1 TO 16, 2-HEXBYTE VALUES */
/*---*/
/* ASID(0042,0043,0044) */
/*---*/
/* JOBNAME: 1 TO 16, 8 BYTE VALUES */
/* This option takes 1 to 16 comma-separated 8 byte values. Each */
/* value specified represents a jobname that should be traced by */
/* ICSF CTRACE support. Additionally, other jobnames that begin */
/* with the same characters will also be traced. For example, if */
/* a USERID is specified, all TSO jobs matching USERIDc, where */
/* 'c' is a character between A-Z will be traced, and, all Unix */
/* processes matching USERIDn, where 'n' is a number from 0-9 */
/* will be traced. */
/*---*/
/* JOBNAME(USERID,JOBNAME1) */
/*---*/
/* BUFSIZE: A VALUE IN RANGE 16K TO 16M */
/*---*/
 BUFSIZE(2M)
/*---*/
/* OPTIONS: NAMES OF FUNCTIONS TO BE TRACED, OR "ALL", OR "MIN" */
/*---*/
/* OPTIONS(*/
/* 'ALL' */
/* ,'KDSIO' */
/* ,'CARDIO' */
/* ,'SYSCALL' */
/* ,'DEBUG' */
/* ,'RDIO' */
/* ,'RDDATA' */
/* ,'MIN' */
/*) */

OPTIONS('KDSIO','CARDIO','SYSCALL','RDIO')

TRACEOPTS - This option takes a value of either ON or OFF. Turning this option OFF reduces ICSF CTRACE
to use a minimal set of tracing. Turning this option OFF disables ICSF CTRACE. When OFF is specified all
other trace options within the PARMLIB options data set should be commented out

ASID - This option takes 1 TO 16 comma-separated 2-hexbyte values. Each value specified represents an
address space ID that should be traced by ICSF CTRACE support

JOBNAME - This option takes 1 TO 16 comma-separated 8 byte values. Each value specified represents a
jobname that should be traced by ICSF CTRACE support. Additionally, other jobnames that begin with the
same characters will also be traced. For example, if a USERID is specified, all TSO jobs matching
USERIDc, where 'c' is a character between A-Z will be traced, and, all Unix processes matching USERIDn,
where 'n' is a number from 0-9 will be traced.

BUFSIZE - This option takes a value in the range between 16K to 16M, where K represents kilobytes and
M represents megabytes. This value is used to specify the ICSF CTRACE buffer size to be allocated.

OPTIONS - This option is used to specify the ICSF CTRACE filters to use for tracing. A comma-separated
list of filter names, each enclosed with single quotes, may be specified. The following filters are supported
by this option:

ALL - This filter provides output for all ICSF trace records regardless of their filter specification.
CARDIO - This filter traces activity with requests to cryptographic coprocessors.
DEBUG - This filter provides granular trace output for debugging specific ICSF modules. This filter
should only be turned on at the direction of IBM service professionals. Turning this level of tracing on
may degrade ICSF performance.
KDSIO - This filter traces update activity to the CKDS, PKDS, and TKDS.
MIN - This filter traces a minimum set of operations that are not covered by the other filters.
RDDATA - This filter traces remote device request and response messages.
RDIO - This filter traces activity pertaining to remote device I/O events.
SYSCALL - This filter traces entry and exit from ICSF callable services.

26 z/OS: z/OS ICSF System Programmer's Guide

The TRACEENTRY option in the ICSF Options Data Set has been deprecated. If this option is specified, it
will be ignored and will produce a CSFO0212 message.

Steps to create the ICSF startup procedure
ICSF provides two job control language programs:

• “Member CSF in SYS1.SAMPLIB” on page 27
• “Member CSF2 in SYS1.SAMPLIB” on page 28

You can use this code as the basis for your startup procedure.

Member CSF in SYS1.SAMPLIB

//CSF PROC
//CSF EXEC PGM=CSFINIT,REGION=0M,TIME=1440,MEMLIMIT=NOLIMIT
//* When using CSFPARM DD, the installation options data set must be
//* a partitioned data set on systems running HCR77D0 or later.
//CSFPARM DD DSN=SYS1.PARMLIB(CSFPRM00),DISP=SHR

Store this startup PROC in SYS1.PROCLIB (or another suitable library).

1. Change or use the sample startup procedure according to your needs.

a. In the sample code, the first line is the PROC statement. You can add one or more procedure
variables to the PROC statement. For example, you can allow the system operator to decide at start
time which member of the installation options data set to use. This example allows the operator to
enter START CSF,PRM=00, specifying an alternate set of start-up options. For systems running ICSF
FMID HCR77D0 or later, the procedure variable PRM must be used to point to the xx of the
CSFPRMxx member containing the installation options in order to start ICSF during IPL-time.

//CSF PROC PRM=00
.
.
.
//CSFPARM DD DSN=MY.ICSF.PARM(CSFPRM&PRM),DISP=SHR

You can use the same principle to change the name of a sequential data set, if you are not using a
partitioned data set. For systems running ICSF FMID HCR77D0 or later, sequential data sets are no
longer supported in the ICSF startup procedure.

b. The last line is the CSFPARM DD statement. The sample code specifies SYS1.PARMLIB as the data
set where the installation options data set is stored. If you stored the installation options data set
elsewhere, replace SYS1.PARMLIB with the name of the data set where you stored the installation
options.

c. The CSFPARM DD statement also specifies member CSFPRM00 as the name of the installation
options data set. If you used a different name when you created the installation options data set (or
any time you want to use other options), change this member name.

2. Store your startup procedure in SYS1.PROCLIB (or another suitable library) with a member name of
your choice. (Depending on installation standards, possible names include CSF, CSFPROD, and
CRYPTO.)

3. If you use Security Server (RACF), you may need to update the RACF Started Procedure Table if you
define a new started task:

a. Add the new started task name
b. Add a RACF userid to associate with the started task. See z/OS Security Server RACF System

Programmer's Guide for more information.
c. Optionally, you can add a RACF group name.

Notes:

Chapter 2. Installation, initialization, and customization 27

• SAF uses the userid associated with the ICSF address space when accessing the CKDS and PKDS
named in the installation options data set both at ICSF startup and when performing coordinated
functions (Coordinated Change-MK, Coordinated Refresh, or Coordinated Convert). When you
perform a non-coordinated CKDS or PKDS task (Initialize, Change MK, Refresh, Convert), SAF uses
the identity associated with the invoker (TSO userid when using panels under TSO/E or the userid
associated with the batch address space when using a batch job).

• If you specify a REMOTEDEVICE entry in the ICSF installation options data set, ICSF will attempt to
connect to this device using TCP/IP. Additional setup is required. For more information, see “Adding
and removing regional cryptographic servers” on page 127.

• CSFPARM2 DD is used internally within ICSF so do not define a CSFPARM2 DD in the ICSF startup
procedure.

Member CSF2 in SYS1.SAMPLIB

//CSF2 PROC PRM=00
//* This procedure can only be used on systems running HCR77D0 or later.
//* On systems running HCR77D0 or later, The PARM keyword can be used to read in an
//* installation options data set that resides in the parmlib concatenation.
//* The value specified on the PARM keyword will be appended to CSFPRM to
//* form the member name.
//CSF2 EXEC PGM=CSFINIT,PARM=&PRM,REGION=0M,TIME=1440,MEMLIMIT=NOLIMIT

Store this startup PROC in SYS1.PARMLIB (or another suitable library).

1. Change or use the sample startup procedure according to your needs.

a. In the sample code, the first line is the PROC statement. You can add one or more procedure
variables to the PROC statement. For example, you can allow the system operator to decide at start
time which member of the installation options data set to use. This example allows the operator to
enter START CSF2,PRM=00, specifying an alternate set of start-up options. For systems running
ICSF FMID HCR77D0 or later, the procedure variable PRM must be used to point to the xx of the
CSFPRMxx member containing the installation options in order to start ICSF during IPL-time.

// CSF2 PROC PRM=00
⋮
//CSF2 EXEC PGM=CSFINIT,PARM=&PRM,REGION=0M,TIME=1440,MEMLIMIT=NOLIMIT

b. The second line is the EXEC statement. You must add the PARM= keyword to this line and set it to
the procedure variable containing the xx value of the CSFPRMxx member containing the installation
options dataset. The CSFPRMxx member must reside in the parmlib concatenation to be read in.

//CSF2 PROC PRM=00
⋮
//CSF2 EXEC PGM=CSFINIT,PARM=&PRM,REGION=0M,TIME=1440,MEMLIMIT=NOLIMIT

c. The EXEC statement derives its member name from the PARM keyword. The 00 value specified on
the PARM keyword is appended to CSFPRM to form CSFPRM00. If you used a different name when
you created the installation options data set (or any time you want to use other options), change the
xx value specified on the PARM keyword.

d. Current ICSF users that want to migrate from CSFPARM DD to using the parmlib concatenation as
detailed in CSF2 must name or rename their installation options data set using the CSFPRM prefix
(for example, CSFPRM00).

2. Store your startup procedure in SYS1.PARMLIB (or another suitable library) with a member name using
the CSFPRM prefix (for example, CSFPRM00).

3. If you use Security Server (RACF), you may need to update the RACF Started Procedure Table if you
define a new started task:

a. Add the new started task name
b. Add a RACF userid to associate with the started task. See z/OS Security Server RACF System

Programmer's Guide for more information.
c. Optionally, you can add a RACF group name.

28 z/OS: z/OS ICSF System Programmer's Guide

Notes:

• SAF uses the userid associated with the ICSF address space when accessing the CKDS and PKDS
named in the installation options data set both at ICSF startup and when performing coordinated
functions (Coordinated Change-MK, Coordinated Refresh, or Coordinated Convert). When you
perform a non-coordinated CKDS or PKDS task (Initialize, Change MK, Refresh, Convert), SAF uses
the identity associated with the invoker (TSO userid when using panels under TSO/E or the userid
associated with the batch address space when using a batch job).

• If you specify a REMOTEDEVICE entry in the ICSF installation options data set, ICSF will attempt to
connect to this device using TCP/IP. Additional setup is required. For more information, see “Adding
and removing regional cryptographic servers” on page 127.

• CSFPARM2 DD is used internally within ICSF so do not define a CSFPARM2 DD in the ICSF startup
procedure.

Steps to provide access to the ICSF panels
To provide a way for the administrator to access the ICSF panels, you can create an ICSF option on the
ISPF Primary Option Menu. Access the code for the ISPF Primary Option Menu panel body and perform
these steps:

1. Under the % OPTION ===> _ZCMD line, add this line:

% <option value> - ICSF Panels

You can specify either a letter or number for the option value. Do not use an option value that already
exists in the menu.

2. On the &ZSEL= TRANS(&ZQ line, add this information:

<option value>,''PANEL(CSF@PRIM) NEWAPPL(CSF)''

The option value should be the same value as the option value you chose to use in the preceding step.

When you access the ISPF Primary Option Menu panel, the ICSF panels option appears on the menu. You
can choose the ICSF option value to access the ICSF panels.

You must also update the logon procedure that is used by ICSF administrators who will use the ICSF
panels. For example:

 //SYSPROC DD ...
 .
 .
 .
 // DD DSN=CSF.SCSFCLI0,DISP=SHR
 .
 .
 .
 //ISPPLIB DD ...
 .
 .
 .
 // DD DSN=CSF.SCSFPNL0,DISP=SHR
 .
 .
 .
 //ISPMLIB DD ...
 .
 .
 .
 // DD DSN=CSF.SCSFMSG0,DISP=SHR
 .
 .
 .
 //ISPSLIB DD ...
 .
 .
 .
 // DD DSN=CSF.SCSFSKL0,DISP=SHR
 .
 .

Chapter 2. Installation, initialization, and customization 29

 .
 // ISPTLIB
 .
 .
 .
 // DD DSN=CSF.SCSFTLIB,DISP=SHR
 .
 .
 .

An alternate method to access the ICSF panels is to use ISPF LIBDEF. Here is a sample clist.

 /* Rexx */
 /* IBMs ICSF */

 address ispexec

 "LIBDEF ISPPLIB DATASET ID('CSF.SCSFPNL0') STACK"
 "LIBDEF ISPMLIB DATASET ID('CSF.SCSFMSG0') STACK"
 "LIBDEF ISPSLIB DATASET ID('CSF.SCSFSKL0') STACK"
 "LIBDEF ISPTLIB DATASET ID('CSF.SCSFTLIB') STACK"

 address tso "ALTLIB ACTIVATE APPLICATION(CLIST)
 DATASET('CSF.SCSFCLI0')"
 "SELECT PANEL(CSF@PRIM) NEWAPPL(CSF) PASSLIB"
 address tso "ALTLIB DEACTIVATE APPLICATION(CLIST)"

 "LIBDEF ISPSLIB"
 "LIBDEF ISPPLIB"
 "LIBDEF ISPMLIB"
 "LIBDEF ISPTLIB"

The z/OS Program Directory lists additional installation steps and some of these steps depend on the
system from which you are migrating. See the z/OS Program Directory, other topics in this publication, and
z/OS Cryptographic Services ICSF Administrator's Guide for details about the remaining steps.

Requiring signature verification for ICSF module CSFINPV2
If your installation needs to operate z/OS PKCS #11 in compliance with the FIPS 140-2 standard, then the
integrity of the cryptographic functions shipped by IBM must be verified at your installation during ICSF
startup. The load module that contains the software cryptographic functions is
SYS1.SIEALNKE(CSFINPV2), and this load module is digitally signed when it is shipped from IBM. Using
RACF, you can verify that the module has remained unchanged from the time it was built and installed on
your system. To do this, you create a profile in the PROGRAM class for the CSFINPV2 module, and use this
profile to indicate that signature verification is required before the module can be loaded.

To require signature verification for ICSF module CSFINPV2:

1. Make sure that RACF has been prepared to verify signed programs. As described in z/OS Security
Server RACF Security Administrator's Guide, a security administrator prepares RACF to verify signed
programs by creating a key ring for signature verification, and adding the code-signing CA certificate
that is supplied with RACF to the key ring. If RACF has been prepared to verify signed programs, there
will be a key ring dedicated to signature verification, the code-signing CA certificate will be attached to
the key ring, and the PROGRAM class will be active.

a. If RACF has been prepared to verify signed programs, the discrete profile
IRR.PROGRAM.SIGNATURE.VERIFICATION in the FACILITY class will specify the name of the
signature-verification key ring. To determine if a signature key ring is already active, enter the
command:

RLIST FACILITY IRR.PROGRAM.SIGNATURE.VERIFICATION

If there is no discrete profile with this name, have your security administrator prepare RACF to
verify signed programs using the information in z/OS Security Server RACF Security Administrator's
Guide.

b. If the signature verification key ring exists, the RLIST command will display information for the
discrete profile IRR.PROGRAM.SIGNATURE.VERIFICATION in the FACILITY class. The name of the

30 z/OS: z/OS ICSF System Programmer's Guide

signature verification key ring and the name of the key ring owner will be included in the
APPLICATION DATA field of the RLIST command output. Using this information, enter the
RACDCERT LISTRING command to make sure the code-signing CA certificate is attached to the key
ring:

RACDCERT ID(key-ring-owner) LISTRING(key-ring-name)

The label of the code-signing CA certificate is 'STG Code Signing CA - G2'. If this label is not shown
in the RACDCERT LISTRING command output, have your security administrator prepare RACF to
verify signed programs using the information in z/OS Security Server RACF Security Administrator's
Guide.

c. Program control must be active in order for RACF to perform signature verification processing. To
make sure the PROGRAM class is active, enter the SETROPTS LIST command.

SETROPTS LIST

The ACTIVE CLASSES field of the command output should include the PROGRAM class. If it does
not, have your security administrator prepare RACF to verify signed programs using the information
in z/OS Security Server RACF Security Administrator's Guide.

2. Create a profile for the CSFINPV2 program module in the PROGRAM class, indicating that the program
must be signed. The following command specifies that the program should fail to load if the signature
cannot be verified for any reason. This command also specifies that all signature verification failures
should be logged.

Note: Due to space constraints, this command example appears on two lines. However, the RDEFINE
command should be entered completely on one line.

RDEFINE PROGRAM CSFINPV2 ADDMEM('SYS1.SIEALNKE'//NOPADCHK) UACC(READ)
 SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

You will need to activate your profile changes in the PROGRAM class.

SETROPTS WHEN(PROGRAM) REFRESH

Steps to start ICSF for the first time
Now that you have created the key data sets, the installation data set, the started procedure, and the ICSF
management panels, you can start ICSF.

For additional information on starting ICSF for the first time, see Appendix D, “Helpful hints for ICSF first
time startup,” on page 425.

• Created an empty data set for use as a CKDS
• Specified the CKDS name in the installation options data set
• Created an empty data set for use as a PKDS
• Specified the PKDS name in the installation options data set
• If PKCS #11 support is desired, create the TKDS
• Created a startup procedure
• Installed ICSF

Steps for initializing ICSF
You must initialize ICSF and the cryptographic coprocessors:

1. Enter the START command and the startup procedure name. In this example, CSF is the name of the
startup procedure.

 START CSF

Chapter 2. Installation, initialization, and customization 31

When you start ICSF, you specify the name of the ICSF startup procedure you created (see “Steps to
create the ICSF startup procedure” on page 27). See “Starting and stopping ICSF” on page 99 for
more information about starting and stopping ICSF.

Note: To reuse ASIDs, the REUSASID parameter can be added to the START comment:

START CSF,REUSASID=YES

2. Access the ICSF panels to define a master key and initialize the CKDS and PKDS. For a description of
how to use the ICSF panels to define a master key and initialize the CKDS and PKDS at first-time
startup, see z/OS Cryptographic Services ICSF Administrator's Guide.

If you intend to use secure key PKCS #11 services, you will also need to initialize the TKDS. This step is
optional and may be deferred until a later time. Initializing the TKDS requires entering the master key
using a TKE workstation. For more information, see z/OS Cryptographic Services ICSF TKE Workstation
User's Guide.

When defining a master key by specifying master key parts, make sure the key parts are recorded
and saved in a secure location. When you are entering the key parts for the first time, be aware that
you may need to reenter these same key values at a later date to restore master key values that
have been cleared. If defining a master key using a pass phrase, realize that the same pass phrase
will always produce the same master key values, and is therefore as critical and sensitive as the
master key values themselves. Make sure you save the pass phrase so that you can later reenter it if
needed. Because of the sensitive nature of the pass phrase, make sure you secure it in a safe place.

3. When you start ICSF for the first time, you will see different messages depending on your system
hardware. The following examples show the messages returned on a IBM zEnterprise EC12 machine
with one Crypto Express4 CCA coprocessor and one Crypto Express4 EP11 cryptographic coprocessor.

• First time startup messages before master keys have been loaded and the CKDS, PKDS, and TKDS
have not been initialized:

S CSF
CSFM608I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM608I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM654I KEY ARCHIVING USE CONTROL IS DISABLED.
CSFM015I FIPS 140 SELF CHECKS FOR PKCS11 SERVICES SUCCESSFUL.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS4 COPROCESSOR 4Cxx, SERIAL NUMBER nnnnnnnn.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS4 COPROCESSOR 4Pxx, SERIAL NUMBER nnnnnnnn.
CSFM131E CRYPTOGRAPHY - SECURE KEY PKCS11 SERVICES ARE NOT AVAILABLE.
CSFM102I TOKEN DATA SET, CSF.TKDS IS NOT INITIALIZED FOR SECURE KEY PKCS11.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CKDS IS NOT INITIALIZED.
CSFM101E PKA KEY DATA SET, CSF.PKDS IS NOT INITIALIZED.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM698I DOMAIN IN USE: 4
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM001I ICSF INITIALIZATION COMPLETE

• First time startup messages before master keys have been loaded and sharing an initialized CKDS,
PKDS, and TKDS:

S CSF
CSFM608I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM608I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM654I KEY ARCHIVING USE CONTROL IS DISABLED.
CSFM015I FIPS 140 SELF CHECKS FOR PKCS11 SERVICES SUCCESSFUL.
CSFM124I MASTER KEY P11 ON CRYPTO EXPRESS4 COPROCESSOR 4Pxx, SERIAL NUMBER nnnnnnnn, NOT
INITIALIZED.
CSFM124I MASTER KEY DES ON CRYPTO EXPRESS4 COPROCESSOR 4Cxx, SERIAL NUMBER nnnnnnnn, NOT
INITIALIZED.
CSFM124I MASTER KEY AES ON CRYPTO EXPRESS4 COPROCESSOR 4Cxx, SERIAL NUMBER nnnnnnnn, NOT
INITIALIZED.
CSFM124I MASTER KEY RSA ON CRYPTO EXPRESS4 COPROCESSOR 4Cxx, SERIAL NUMBER nnnnnnnn, NOT
INITIALIZED.
CSFM124I MASTER KEY ECC ON CRYPTO EXPRESS4 COPROCESSOR 4Cxx, SERIAL NUMBER nnnnnnnn, NOT
INITIALIZED.

CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM698I DOMAIN IN USE: 4

32 z/OS: z/OS ICSF System Programmer's Guide

CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE
AVAILABLE.
CSFM001I ICSF INITIALIZATION COMPLETE

• Normal ICSF restart messages. Master key registers are valid and match the CKDS/PKDS/TKDS:

S CSF
CSFM608I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM608I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM654I KEY ARCHIVING USE CONTROL IS DISABLED.
CSFM015I FIPS 140 SELF CHECKS FOR PKCS11 SERVICES
SUCCESSFUL.
CSFM129I MASTER KEY P11 ON CRYPTO EXPRESS4 COPROCESSOR 4Pxx, SERIAL NUMBER nnnnnnnn, IS CORRECT.
CSFM129I MASTER KEY DES ON CRYPTO EXPRESS4 COPROCESSOR 4Cxx, SERIAL NUMBER nnnnnnnn, IS CORRECT.
CSFM129I MASTER KEY AES ON CRYPTO EXPRESS4 COPROCESSOR 4Cxx, SERIAL NUMBER nnnnnnnn, IS CORRECT.
CSFM129I MASTER KEY RSA ON CRYPTO EXPRESS4 COPROCESSOR 4Cxx, SERIAL NUMBER nnnnnnnn, IS CORRECT.
CSFM129I MASTER KEY ECC ON CRYPTO EXPRESS4 COPROCESSOR 4Cxx, SERIAL NUMBER nnnnnnnn, IS CORRECT.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS4 COPROCESSOR 4Cxx, SERIAL NUMBER nnnnnnnn.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS4 COPROCESSOR 4Pxx, SERIAL NUMBER nnnnnnnn.
CSFM132I SECURE KEY PKCS11 SERVICES AVAILABLE.
CSFM698I DOMAIN IN USE: 4
CSFM400I CRYPTOGRAPHY - SERVICES ARE NOW AVAILABLE.
CSFM130I CRYPTOGRAPHY - RSA SERVICES ARE AVAILABLE.
CSFM130I CRYPTOGRAPHY - DES SERVICES ARE AVAILABLE.
CSFM130I CRYPTOGRAPHY - ECC SERVICES ARE AVAILABLE.
CSFM127I CRYPTOGRAPHY - AES SERVICES ARE AVAILABLE.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE
AVAILABLE.
CSFM001I ICSF INITIALIZATION COMPLETE

Notes:

1. When you are starting ICSF for the first time and loading the first master key and initializing one or
more CKDS, PKDS, or TKDS, you provide the name of the empty VSAM data set you defined previously
(see “Steps to create the PKDS” on page 18 step 3) to use for the CKDS, PKDS, and TKDS when
starting ICSF.

2. While ICSF processes the data set, it requires exclusive use so that no one can make changes while
the data set is read. ICSF releases the data set when it completes startup processing.

3. During CKDS, PKDS, and TKDS initialization or refresh, ICSF reads the CKDS, PKDS, or TKDS into
extended private storage. Specify MEMLIMIT=NOLIMIT to ensure that ICSF does not run out of virtual
storage.

4. You can also write application programs to call services to perform cryptographic functions. See “Exits
for the services” on page 158 for details.

Customizing ICSF after the first start
The startup procedure can include a CSFPARM DD statement, which gives the name of the installation
options data set. The installation options data set can alternatively be located in the parmlib
concatenation if the startup procedure has been configured to read the CSFPRMxx member from that
location.

After the first start, whenever you restart ICSF, the CKDS and PKDS named in the installation options data
set becomes the active in-storage CKDS and PKDS.

In order for changes to the installation options dataset to take effect, stop and restart ICSF. A subset of
option parameters in the installation options data set are refreshable starting with ICSF FMID HCR77C0.
See the SETICSF command or ICSF Multi-Purpose Service (CSFMPS and CSFMPS6) for details. To change
the active in-storage CKDS or PKDS, stop and restart ICSF, or use the REFRESH option of the Master Key
Management panel.

Parameters in the installation options data set
The installation options data set is an intended programming interface.

Chapter 2. Installation, initialization, and customization 33

When specifying parameter values within parentheses, leading and trailing blanks are ignored. Embedded
blanks may cause unpredictable results.

Support is provided for the use of system symbols in the installation options data set. System symbols can
be used as values for any of the parameters. System symbols are specified in the IEASYMxx member of
SYS1.PARMLIB; the IEASYM statement of the LOADxx member of SYS1.PARMLIB specifies the IEASYMxx
member or members to be used for the resolution of system symbols. This example shows the use of a
system symbol for specifying the domain to be used for the start of ICSF:

 DOMAIN(&PARDOM.)

When the Installation Options Data Set is processed during the start of ICSF, the value of the system
symbol PARDOM will be substituted as the value of the DOMAIN parameter.

For the first start, you specified an empty VSAM data set name for the CKDS in the CKDSN option and an
empty VSAM data set name for the PKDS in the PKDSN option. You may want to change these and other
options for subsequent starts. Here is a complete list of installation options:

AUDITKEYLIFECKDS(TOKEN(YES or NO),LABEL(YES or NO))
Provides a set of options that control auditing of events related to the lifecycle of symmetric CCA
tokens. The audit logs are in the form of Type 82 SMF records.
TOKEN(YES or NO)

Controls lifecycle auditing of CKDS tokens.
Value

Indication
YES

Indicates ICSF should audit lifecycle events related to CKDS tokens. An SMF type 82 subtype
40 record is logged for each event.

NO
No lifecycle auditing of CKDS tokens occurs.

LABEL(YES or NO)
Controls lifecycle auditing of CKDS labels.
Value

Indication
YES

Indicates ICSF should audit lifecycle events related to CKDS labels. An SMF type 82 subtype
40 record is logged for each event. The subtype 40 record replaces the subtype 9 record.

NO
No lifecycle auditing of CKDS labels occurs. ICSF continues to log an SMF type 82 subtype 9
record for CKDS updates.

If the AUDITKEYLIFECKDS option is not specified, the default is AUDITKEYLIFECKDS
(TOKEN(NO),LABEL(NO)).

Note:

1. An event that involves a token is considered to be any request that uses a token as opposed to a
label. This is true regardless of Key Store Policy enablement.

2. If auditing of CKDS labels is enabled, the Key Generator Utility Program (KGUP) needs access to
the CSFGKF profile in the CSFSERV class in order to generate the key fingerprint for keys it
processes.

For more information about the events that are audited as well as the information contained in the
audit record, see Appendix B in z/OS Cryptographic Services ICSF System Programmer's Guide for the
description for the subtype 40 record.

The auditing of key lifecycle events can also be controlled via the SETICSF operator command. See
the description of the SETICSF command in z/OS Cryptographic Services ICSF System Programmer's
Guide for more information.

34 z/OS: z/OS ICSF System Programmer's Guide

Starting with ICSF FMID HCR77C0, the value for this option can be updated without restarting ICSF by
using either the SETICSF command or the ICSF Multi-Purpose service (CSFMPS or CSFMPS6).

AUDITKEYLIFEPKDS(TOKEN(YES or NO),LABEL(YES or NO))
Provides a set of options that control auditing of events related to the lifecycle of asymmetric CCA
tokens. The audit logs are in the form of Type 82 SMF records.
TOKEN(YES or NO)

Controls lifecycle auditing of PKDS tokens.
Value

Indication
YES

Indicates ICSF should audit lifecycle events related to PKDS tokens. An SMF type 82 subtype
41 record is logged for each event.

NO
No lifecycle auditing of PKDS tokens occurs.

LABEL(YES or NO)
Controls lifecycle auditing of PKDS labels.
Value

Indication
YES

Indicates ICSF should audit lifecycle events related to PKDS labels. An SMF type 82 subtype
41 record is logged for each event. The subtype 41 record replaces the subtype 13 record.

NO
No lifecycle auditing of PKDS labels occurs. ICSF continues to log an SMF type 82 subtype 13
record for PKDS updates.

If the AUDITKEYLIFEPKDS option is not specified, the default is AUDITKEYLIFEPKDS
(TOKEN(NO),LABEL(NO)).

Note: An event that involves a token is considered to be any request that uses a token as opposed to a
label. This is true regardless of Key Store Policy enablement.

For more information about the events that are audited as well as the information contained in the
audit record, see Appendix B in z/OS Cryptographic Services ICSF System Programmer's Guide for the
description for the subtype 41 record.

The auditing of key lifecycle events can also be controlled via the SETICSF operator command. See
the description of the SETICSF command in z/OS Cryptographic Services ICSF System Programmer's
Guide for more information.

Starting with ICSF FMID HCR77C0, the value for this option can be updated without restarting ICSF by
using either the SETICSF command or the ICSF Multi-Purpose service (CSFMPS or CSFMPS6).

AUDITKEYLIFETKDS(TOKENOBJ(YES or NO),SESSIONOBJ(YES or NO))
Provides a set of options that control auditing of events related to the lifecycle of PKCS #11 objects.
The audit logs are in the form of Type 82 SMF records.
TOKENOBJ(YES or NO)

Controls lifecycle auditing of PKCS #11 token objects.
Value

Indication
YES

Indicates ICSF should audit lifecycle events related to PKCS #11 token objects. An SMF type
82 subtype 42 record is logged for each event. The subtype 42 record replaces the subtype 23
record.

NO
No lifecycle auditing of PKCS #11 token objects occurs. ICSF continues to log an SMF type 82
subtype 23 record for TKDS updates.

Chapter 2. Installation, initialization, and customization 35

SESSIONOBJ(YES or NO)
Controls lifecycle auditing of PKCS #11 session objects.
Value

Indication
YES

Indicates ICSF should audit lifecycle events related to PKCS #11 session objects. An SMF type
82 subtype 42 record is logged for each event.

NO
No lifecycle auditing of PKCS #11 session objects occurs.

If the AUDITKEYLIFETKDS option is not specified, the default is AUDITKEYLIFETKDS
(TOKENOBJ(NO),SESSIONOBJ(NO)).

For more information about the events that are audited as well as the information contained in the
audit record, see Appendix B in z/OS Cryptographic Services ICSF System Programmer's Guide for the
description for the subtype 42 record.

The auditing of key lifecycle events can also be controlled via the SETICSF operator command. See
the description of the SETICSF command in z/OS Cryptographic Services ICSF System Programmer's
Guide for more information.

Starting with ICSF FMID HCR77C0, the value for this option can be updated without restarting ICSF by
using either the SETICSF command or the ICSF Multi-Purpose service (CSFMPS or CSFMPS6).

AUDITKEYUSGCKDS(TOKEN(YES or NO),LABEL(YES or NO),INTERVAL(n))
Provides a set of options that control auditing of events related to the usage of symmetric CCA tokens.
The audit logs are in the form of Type 82 SMF records.
TOKEN(YES or NO)

Controls usage auditing of CKDS tokens.
Value

Indication
YES

Indicates ICSF should audit usage events related to CKDS tokens. An SMF type 82 subtype 44
record is logged for each event.

NO
No usage auditing of CKDS tokens occurs.

LABEL(YES or NO)
Controls usage auditing of CKDS labels.
Value

Indication
YES

Indicates ICSF should audit usage events related to CKDS labels. An SMF type 82 subtype 44
record is logged for each event.

NO
No usage auditing of CKDS labels occurs.

INTERVAL(n)
Defines the time interval over which the audit records are aggregated. Specify n as a decimal value
in hours from 1 through 24. Individual usages with the same user, service, and key are aggregated
over the interval into a single SMF record with a usage count. For performance reasons, ICSF may
temporarily reduce the length of an interval from what was specified.

If the AUDITKEYUSGCKDS option is not specified, the default is
AUDITKEYUSGCKDS(TOKEN(NO),LABEL(NO),INTERVAL(24)).

Note: An event that involves a token is considered to be any request that uses a token as opposed to a
label. This is true regardless of Key Store Policy enablement.

36 z/OS: z/OS ICSF System Programmer's Guide

For more information about the information contained in the audit record, see Appendix B in z/OS
Cryptographic Services ICSF System Programmer's Guide for the description for the subtype 44 record.

The auditing of key usage events can also be controlled via the SETICSF operator command. See the
description of the SETICSF command in z/OS Cryptographic Services ICSF System Programmer's Guide
for more information.

Starting with ICSF FMID HCR77C0, the value for this option can be updated without restarting ICSF by
using either the SETICSF command or the ICSF Multi-Purpose service (CSFMPS or CSFMPS6).

AUDITKEYUSGPKDS(TOKEN(YES or NO),LABEL(YES or NO),INTERVAL(n))
Provides a set of options that control auditing of events related to the usage of asymmetric CCA
tokens. The audit logs are in the form of Type 82 SMF records.
TOKEN(YES or NO)

Controls usage auditing of PKDS tokens.
Value

Indication
YES

Indicates ICSF should audit usage events related to PKDS tokens. An SMF type 82 subtype 45
record is logged for each event.

NO
No usage auditing of PKDS tokens occurs.

LABEL(YES or NO)
Controls usage auditing of PKDS labels.
Value

Indication
YES

Indicates ICSF should audit usage events related to PKDS labels. An SMF type 82 subtype 45
record is logged for each event.

NO
No usage auditing of PKDS labels occurs.

INTERVAL(n)
Defines the time interval over which the audit records are aggregated. Specify n as a decimal value
in hours from 1 through 24. Individual usages with the same user, service, and key are aggregated
over the interval into a single SMF record with a usage count. For performance reasons, ICSF may
temporarily reduce the length of an interval from what was specified.

If the AUDITKEYUSGPKDS option is not specified, the default is
AUDITKEYUSGPKDS(TOKEN(NO),LABEL(NO),INTERVAL(24)).

Note: An event that involves a token is considered to be any request that uses a token as opposed to a
label. This is true regardless of Key Store Policy enablement.

For more information about the information contained in the audit record, see Appendix B in z/OS
Cryptographic Services ICSF System Programmer's Guide for the description for the subtype 45 record.

The auditing of key usage events can also be controlled via the SETICSF operator command. See the
description of the SETICSF command in z/OS Cryptographic Services ICSF System Programmer's Guide
for more information.

Starting with ICSF FMID HCR77C0, the value for this option can be updated without restarting ICSF by
using either the SETICSF command or the ICSF Multi-Purpose service (CSFMPS or CSFMPS6).

AUDITPKCS11USG(TOKENOBJ(YES or NO),SESSIONOBJ(YES or NO),NOKEY(YES or
NO),INTERVAL(n))

Provides a set of options that control auditing of usage events related to PKCS #11 services. The audit
logs are in the form of Type 82 SMF records.

Chapter 2. Installation, initialization, and customization 37

TOKEN(YES or NO)
Controls usage auditing of PKCS #11 token objects.
Value

Indication
YES

Indicates ICSF should audit usage events related to PKCS #11 token objects. An SMF type 82
subtype 46 record is logged for each event.

NO
No usage auditing of PKCS #11 token objects occurs.

SESSIONOBJ(YES or NO)
Controls usage auditing of PKCS #11 session objects.
Value

Indication
YES

Indicates ICSF should audit usage events related to PKCS #11 session objects. An SMF type
82 subtype 46 record is logged for each event.

NO
No usage auditing of PKCS #11 session objects occurs.

NOKEY(YES or NO)
Controls usage auditing of PKCS #11 services that do not involve an object.
Value

Indication
YES

Indicates ICSF should audit relevant usages that do not pertain to a PKCS #11 object.
Relevant usages include use of the PKCS #11 One-way hash, sign, or verify (CSFPPRF) and
PKCS #11 Pseudo-random function (CSFPOWH) services. An SMF type 82 subtype 47 record
is logged for each event.

NO
No usage auditing of PKCS #11 services that do not involve an object occurs.

INTERVAL(n)
Defines the time interval over which the audit records are aggregated. Specify n as a decimal value
in hours from 1 through 24. Individual usages with the same user, service, and key are aggregated
over the interval into a single SMF record with a usage count. For performance reasons, ICSF may
temporarily reduce the length of an interval from what was specified.

If the AUDITPKCS11USG option is not specified, the default is
AUDITPKCS11USG(TOKENOBJ(NO),SESSIONOBJ(NO),NOKEY(NO), INTERVAL(24)).

For more information about the information contained in the audit record, see Appendix B in z/OS
Cryptographic Services ICSF System Programmer's Guide for the description for the subtypes 46 and
47 records.

The auditing of key usage events can also be controlled via the SETICSF operator command. See the
description of the SETICSF command in z/OS Cryptographic Services ICSF System Programmer's Guide
for more information.

Starting with ICSF FMID HCR77C0, the value for this option can be updated without restarting ICSF by
using either the SETICSF command or the ICSF Multi-Purpose service (CSFMPS or CSFMPS6).

BEGIN(fmid)
Specifies that parameters following this BEGIN parameter are supported in release fmid and later.
There must be an END statement to complete the current section. If not, an error message will be
issued and ICSF will terminate.

There may be any number of BEGIN/END pairs in the data set, but they cannot be nested within each
other. A BEGIN must have a matching END before another BEGIN can be specified.

38 z/OS: z/OS ICSF System Programmer's Guide

If the release of ICSF you are running is at this release or later, the parameters will be parsed and
processed. If release of ICSF you are running is an earlier release, the parameters will be ignored.

It is recommended that when your systems are all running releases that support newer parameters
that the BEGIN/END pair be removed.

The following FMIDs are supported: HCR7740, HCR7750, HCR7751, HCR7770, HCR7780, HCR7790,
HCR77A0, HCR77A1, HCR77B0, HCR77B1, HCR77C0, HCR77C1, and HCR77D0.

Starting with ICSF FMID HCR77C0, the value for this option can be updated without restarting ICSF by
using either the SETICSF command or the ICSF Multi-Purpose service (CSFMPS or CSFMPS6).

Here is an example of the usage of the BEGIN/END parameters.

parameter4 /* parameter4 is supported by all releases */
BEGIN(HCR7751)
parameter1 /* parameter1 added in HCR7751 */
parameter3 /* parameter3 added in HCR7751 */
END
BEGIN(HCR7770)
parameter2 /* parameter2 added in HCR7770 */
END
parameter5 /* parameter5 is supported by all releases */

CHECKAUTH(YES or NO)
Indicates whether ICSF performs security access control checking of Supervisor State or System Key
callers. If you specify CHECKAUTH(YES), ICSF issues RACROUTE calls to perform the security access
control checking and the results are logged in RACF SMF records that are cut by RACF. If you specify
CHECKAUTH(NO), the authorization checks against resources in the CSFSERV, CSFKEYS, and
XCSFKEY classes are not performed.

If you do not specify the CHECKAUTH option, the default is CHECKAUTH(NO).

If you configure CHECKAUTH(YES) in the ICSF options dataset, the Health Checker address space
user identity must be authorized to the CSFRKL profile in class CSFSERV for the
ICSFMIG7731_ICSF_RETAINED_RSAKEY migration check to successfully execute. However, you have
no action to take if you choose not to run the migration check. If you configure CHECKAUTH(NO),
there is no requirement to authorize the Health Checker user identity for any ICSF profiles or classes,
since the check routine executes in supervisor state. This is not an implementation consideration, but
rather a check deployment or activation time customer administration consideration.

Starting with ICSF FMID HCR77C0, the value for this option can be updated without restarting ICSF by
using either the SETICSF command or the ICSF Multi-Purpose service (CSFMPS or CSFMPS6).

CICSAUDIT(YES or NO)
Indicates whether ICSF logs CICS client identity information on SAF calls that check the CICS address
space access to the CSFSERV, CSFKEYS, and XCSFKEY classes. CICSAUDIT(NO) is the default.

If you specify CICSAUDIT(YES), when a CICS transaction running on the Quasi Reentrant (QR) task
calls an ICSF service, ICSF subsequently calls a CICS service to obtain the client identity information.
This information is then constructed into a log string, which is passed to the security product.

The following identity information is collected:

• Userid.
• X500 certificate information:

X500_IDN
The IDN string is truncated to 255 bytes if a longer value is present.

X500_SDN
The SDN string is truncated to 255 bytes if a longer value is present.

• Distributed Identity Data (IDID):

– IDID user name (in UTF8 format).
– IDID user name format.

Chapter 2. Installation, initialization, and customization 39

– Distributed registry name (in UTF8 format).

CICSAUDIT(YES) should only be specified if you are collecting SMF type 80, event code 2 (resource
access) records.

By processing the resulting SMF log, you can determine which CICS users are accessing which ICSF
services and which keys are being used.

CKDSN(data-set-name)
Specifies the CKDS name the system uses to start ICSF. Whenever you restart ICSF, the CKDS named
in the CKDSN option becomes the active in-storage CKDS. (At first-time startup, you should specify
the name of an empty VSAM data set you created to use as the CKDS.)

If you do not specify this keyword, you will not be able to use secure CCA symmetric keys or use ICSF
to manage CCA symmetric keys. ICSF must be restarted in order to switch between having a CKDS
and not having a CKDS.

See “Steps to create the installation options data set” on page 23 for the data set naming format
requirements.

CKTAUTH(YES or NO)
This keyword is no longer supported, but is tolerated.

COMPAT(YES, NO, or COEXIST)
Indicates whether ICSF runs in compatibility mode, non-compatibility mode, or coexistence mode
with PCF.
YES

Indicates compatibility mode.

In compatibility mode, you can run a PCF application on ICSF because ICSF supports the PCF
macros. You do not have to reassemble PCF applications to do this. You cannot start PCF at the
same time as ICSF on the same operating system.

NO
Indicates non-compatibility mode. In noncompatibility mode, you run PCF applications on PCF
and ICSF applications on ICSF. You cannot run PCF applications on ICSF because ICSF does not
support the PCF macros in this mode. PCF can be started at the same time as ICSF on the same
operating system. You can start ICSF and then start PCF, or you can start PCF and then start ICSF.

You should use noncompatibility mode unless you are migrating from PCF to ICSF.

COEXIST
Indicates coexistence mode.

In coexistence mode, you can run a PCF application on PCF, or you can reassemble the PCF
application to run on ICSF. To do this, you reassemble the application against coexistence macros
that are shipped with ICSF. You can start PCF at the same time as ICSF on the same operating
system.

If you do not specify the COMPAT option, the default value is COMPAT(NO). See “Running PCF and
z/OS ICSF on the same system” on page 219 for a complete description of the COMPAT options.

When you initialize ICSF for the first time, noncompatibility mode must be active. Therefore, at first-
time startup, you must specify COMPAT(NO)

or allow the default to be used.
COMPENC(DES or CDMF)

This keyword is no longer supported, but is tolerated.
COMPLIANCEWARN(PCIHSM2016(YES or NO or SAF))

Indicates whether ICSF should generate compliance warning events for a compliance mode.
Compliance warning events can be used to help migrate an application to a given compliance mode.
Compliance warning events are written in the form of SMF type 82 subtype 48 records. If you do not
specify the COMPLIANCEWARN option, the default is NO for all compliance modes.

40 z/OS: z/OS ICSF System Programmer's Guide

PCIHSM2016(YES or NO or SAF)
Controls warning events for the PCI-HSM 2016 compliance mode. If you do not specify the
PCIHSM2016 option, the default is NO.
Value

Indication
YES

Generate compliance warning events for all applications.
NO

No compliance warning events are generated.
SAF

Generate compliance warning events for applications which have READ access to the
CSF.COMPLIANCEWARN.PCIHSM2016 profile in the XFACILIT SAF class.

For more information about the information contained in the SMF record, see Appendix B, “ICSF SMF
records,” on page 367 for the description of the subtype 48 record.

A compliance warning event is only written when a DES key is used in a callable service. See Chapter
3, “Migration,” on page 53 for more information on how you can use compliance warning events to
help migrate an application.

The generation of compliance warning events can also be controlled with the SETICSF,OPT REFRESH
operator command. For more information, see “SETICSF” on page 113.

CTRACE(CTICSFxx)
Specifies the CTICSFxx ICSF CTRACE configuration data set to use from PARMLIB. CTICSF00 is the
default ICSF CTRACE configuration data set that is installed with ICSF FMID HCR77A1 and later
releases. CTICSF00 may be copied to create new PARMLIB members using the naming convention of
CTICSFxx, where xx is a unique value specified by the user.

This parameter is optional. If the specified PARMLIB member is incorrect or absent, ICSF CTRACE will
attempt to use the default CTICSF00 PARMLIB member. If the CTICSF00 PARMLIB member is
incorrect or absent, ICSF CTRACE will perform tracing using an internal default set of trace options. By
default, ICSF CTRACE support will trace with the KdsIO, CardIO, and SysCall filters using a 2M buffer.
For more information refer to “Creating an ICSF CTRACE configuration data set” on page 25s.

DEFAULTWRAP(internal_wrapping_method,external_wrapping_method)
Specifies the default key wrapping for DES keys. Any token generated or updated by a service will be
wrapped using the specified method unless overridden by rule array keyword or a skeleton token. The
default wrapping method for internal and external tokens is specified independently.

Valid values for internal_wrapping_method and external_wrapping_method are:
ORIGINAL

Specifies the original CCA token wrapping be used: ECB wrapping for DES.
ENHANCED

Specifies the new X9.24 compliant CBC wrapping is used. The enhanced wrapping method with
SHA-1 is available on IBM zEnterprise 196, IBM zEnterprise 114 and newer servers.

If the DEFAULTWRAP parameter is not specified, the default wrapping method is ORIGINAL for both
internal and external tokens.

Note: Triple-length DES keys are always wrapped with the enhanced method with SHA-256. The
setting of this parameter has no effect on the wrapping of triple-length DES keys except DATA keys
with a zero control vector.

During initialization, ICSF changes the setting of the default wrapping method for all CCA
coprocessors to match the value that is specified by this parameter.

Notes:

• Starting with ICSF FMID HCR77C0, the value for this option can be updated without restarting ICSF
by using either the SETICSF command or the ICSF Multi-Purpose service (CSFMPS or CSFMPS6).

Chapter 2. Installation, initialization, and customization 41

• Starting with ICSF FMID HCR77C1 on IBM z14 servers, the ENHANCED wrapping method should be
used if you are using PCI-HSM compliant tagged keys.

DOMAIN(n)
Specifies the number of the domain that you want to use for this start of ICSF. You can specify only
one domain in the options data set. The domain value must match the activation profile.

DOMAIN is an optional parameter. The DOMAIN parameter is only required if more than one domain is
specified as the usage domain on the PR/SM panels. If specified in the options data set, it will be used
and it must be one of the usage domains for the LPAR.

If DOMAIN is not specified in the options data set, ICSF determines which domains are available in
this LPAR. If only one domain is defined for the LPAR, ICSF will use it. If more than one is available,
ICSF will issue error message CSFM409E.

The cryptographic processors support multiple sets of master key registers, which the specific domain
values identify.

• The PCIXCC/CEX2C has master key registers for the DES-MK, AES-MK and RSA-MK master keys.
Each domain has a master key register for the current, new, and old DES-MK, AES-MK and RSA-MK.

• CCA cryptographic coprocessors that are CEX3C or later have master key registers for the DES-MK,
AES-MK, RSA-MK, and ECC-MK master keys. Each domain has a master key for the current, new,
and old DES-MK, AES-MK, RSA-MK, and ECC-MK.

• The PKCS #11 cryptographic coprocessors have master key registers for the P11-MK master key.
Each domain has a master key for the current and new P11-MK.

Note: The domain number that ICSF uses has no meaning for regional cryptographic servers. Regional
cryptographic servers use the port number to identify the master key register to use.

For more information about partitions and running different configurations, see z/OS Cryptographic
Services ICSF Overview.

If you run ICSF in compatibility or coexistence mode, you cannot change the domain number without
re-IPLing the system. A re-IPL ensures that a program does not access a cryptographic service with a
key that is encrypted under a different master key. If you are certain that no cryptographic
applications are still running, you can:

1. Stop CSF
2. Start CSF in COMPAT(NO) mode with a different domain number
3. Stop CSF
4. Start CSF in compatibility or coexistence mode with a different domain number.

END
Specifies the end of a section of parameters for the fmid from the BEGIN(fmid). There must be a
BEGIN(fmid) prior to the END. There must be an END for each BEGIN(fmid). See the description for
BEGIN for an example of the usage of the BEGIN and END parameters.

Starting with ICSF FMID HCR77C0, the value for this option can be updated without restarting ICSF by
using either the SETICSF command or the ICSF Multi-Purpose service (CSFMPS or CSFMPS6).

EXIT(ICSF-name,load-module-name,FAIL(fail-option))
Indicates information about an installation exit.

The ICSF -name is the identifier for each exit. Appendix G, “Resource names for CCA and ICSF entry
points,” on page 439 lists all the ICSF exit names and explains when ICSF calls each exit. The load
module name is the name of the module that contains the exit. The name can be any valid name your
installation chooses.

Using the FAIL keyword of the EXIT statement, you specify the action ICSF, the KGUP, or the PCF
conversion program takes if the exit ends abnormally. The fail action that you specify applies to

42 z/OS: z/OS ICSF System Programmer's Guide

subsequent calls of the exit. If an exit ends abnormally, ICSF takes a system dump. The exit is
protected with an ESTAE or the ICSF service functional recovery routine (FRR).

In general, you can specify one of these values for a fail option:
NONE

No action is taken. The exit can be called again and will end abnormally again.
EXIT

The exit is no longer available to be called again.
SERVICE

The service or program that called the exit is no longer available to be called again.
ICSF

ICSF or the key generator utility program or the PCF conversion program is ended, depending on
the exit.

Some fail options are not valid for a specific exit. If you specify a fail option that is not valid, ICSF uses
the next valid fail option. For example, if SERVICE is not a valid fail option for an exit, ICSF uses the
EXIT option. EXIT is responsible for logging in SMF the results of any authorization checks that are
made.

See Chapter 5, “Installation exits,” on page 157 for a detailed description of each ICSF exit, including
the valid fail options.

Note: z/OS no longer ships IBM-supplied security exit routines; the security exit points remain. Users
of z/OS should use Security Server (RACF) or an equivalent product to obtain access checking of
services and keys. ICSF no longer needs these exit routines.

FIPSMODE(YES, FAIL(fail-option) or COMPAT, FAIL(fail-option) or NO,FAIL(fail-option))
Indicates whether z/OS PKCS #11 services must run in compliance with the Federal Information
Processing Standard Security Requirements for Cryptographic Modules, referred to as FIPS 140-2.
FIPS 140-2, published by the National Institute of Standards and Technology (NIST), is a standard
that defines rules and restrictions for how cryptographic modules should protect sensitive or valuable
information. The standard is available at Security Requirements For Cryptographic Modules
(nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf).

By configuring z/OS PKCS #11 services to operate in compliance with FIPS 140-2 specifications,
installations or individual applications can use the z/OS PKCS #11 services in a way that allows only
the cryptographic algorithms (including key sizes) approved by the standard, and restricts access to
the algorithms that are not approved. For more information, see z/OS Cryptographic Services ICSF
Writing PKCS #11 Applications.

YES
Indicates that the z/OS PKCS #11 services will operate in FIPS standard mode. Any application
using the PKCS #11 services will be forced to use those services in a FIPS-compliant manner.
Applications will not have access to the algorithms or key sizes not approved by FIPS 140-2. In
addition, ICSF initialization will test that it is running on an IBM Z® model type, and a version and
release of z/OS, that supports FIPS. If so, then ICSF will perform a series of cryptographic known
answer tests as required by the FIPS 140-2 standard. If any of these initialization tests should fail,
the action the ICSF initialization process takes will depend on the fail-option specified.

The fail-option is either YES or NO and indicates the action that the ICSF initialization process
should take if any of the initialization tests should fail.
YES

Indicates ICSF is to terminate abnormally if there is a failure in any of the tests performed.
NO

Indicates ICSF initialization processing is to continue even if there is a failure in any of the
tests performed. However, PKCS #11 support will be limited or nonexistent depending on the
test that failed:

• If ICSF is running on an IBM Z model type or with a version of z/OS that does not support
FIPS, most FIPS processing is bypassed. PKCS #11 callable services will be available, but

Chapter 2. Installation, initialization, and customization 43

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf

ICSF will not adhere to FIPS 140 restrictions. Requests to generate or use a key with
CKA_IBM_FIPS140=TRUE or those requests that explicitly ask for FIPS processing will
result in a failure return code.

• If a known answer test failed, all ICSF PKCS #11 callable services will be unavailable.

COMPAT
Indicates that the z/OS PKCS #11 services will operate in FIPS compatibility mode. This mode is
intended for installations where only certain z/OS PKCS #11 applications must comply with the
FIPS 140-2 standard, while other applications do not. In this mode, the PKCS #11 services can be
further configured so that the applications that do not need to comply with the FIPS 140-2
standard are not restricted from using any of the PKCS #11 algorithms, while applications that
must comply with the standard are restricted from using the non-approved algorithms. By default,
the COMPAT option will have the same effect as the YES option, and all applications using the
PKCS #11 services will be forced to use those services in a FIPS-compliant manner. However,
additional specifications can be made:

• at the PKCS #11 token and application level, by creating FIPSEXEMPT.token-label resource
profiles in the CRYPTOZ class. A FIPSEXEMPT.token-label resource exists for each token. User
IDs with READ access authority to a FIPSEXEMPT.token-label are exempt from FIPS compliance,
while user IDs with access authority NONE can only use the PKCS #11 services in a FIPS-
compliant manner.

• within applications themselves for individual keys. When an application creates a key, the
application can specify that the key must be used in a FIPS 140-2 compliant fashion. The
application can specify this by setting the Boolean key attribute CKA_IBM_FIPS140 to TRUE.

When the COMPAT option is specified, ICSF initialization will test that it is running on an IBM Z
model type, and a version and release of z/OS, that supports FIPS. If so, then ICSF will perform a
series of cryptographic known answer tests as required by the FIPS 140-2 standard. If any of
these initialization tests should fail, the action the ICSF initialization process takes will depend on
the fail-option specified.

The fail-option is either YES or NO and indicates the action that the ICSF initialization process
should take if any of the initialization tests should fail.
YES

Indicates ICSF is to terminate abnormally if there is a failure in any of the tests performed.
NO

Indicates ICSF initialization processing is to continue even if there is a failure in any of the
tests performed. However, PKCS #11 support will be limited or nonexistent depending on the
test that failed:

• If ICSF is running on an IBM Z model type or with a version of z/OS that does not support
FIPS, most FIPS processing is bypassed. PKCS #11 callable services will be available, but
ICSF will not adhere to FIPS 140 restrictions. Requests to generate or use a key with
CKA_IBM_FIPS140=TRUE or those requests that explicitly ask for FIPS processing will
result in a failure return code.

• If a known answer test failed, all ICSF PKCS #11 callable services will be unavailable.

NO
Indicates that ICSF should operate in FIPS no enforcement mode, also known as FIPS on-demand
mode. Applications may request strict adherence to FIPS 140 restrictions when requesting ICSF
services. However, applications not requesting FIPS processing are not required to adhere to FIPS
140 restrictions. FIPSEXEMPT.token-label profiles, if they exist in the CRYPTOZ class, will not be
examined. If ICSF is running on an IBM Z model type that does not support FIPS, requests to
generate or use a key with CKA_IBM_FIPS140=TRUE or those requests that explicitly ask for FIPS
processing will result in a failure return code.

ICSF initialization will test that it is running on an IBM Z model type and version/release of z/OS
that supports FIPS. If so, ICSF initialization will also perform a series of cryptographic known

44 z/OS: z/OS ICSF System Programmer's Guide

answer self tests. Should a test fail, the action ICSF initialization takes is dependent on the fail
option.

The fail-option is either YES or NO and indicates the action that the ICSF initialization process
should take if any of the initialization tests should fail.
YES

Indicates ICSF is to terminate abnormally if there is a failure in any of the tests performed.
NO

Indicates ICSF initialization processing is to continue even if there is a failure in any of the
tests performed. However, PKCS #11 support will be limited or nonexistent depending on the
test that failed:

• If ICSF is running on an IBM Z model type or with a version of z/OS that does not support
FIPS, most FIPS processing is bypassed. PKCS #11 callable services will be available, but
ICSF will not adhere to FIPS 140 restrictions. Requests to generate or use a key with
CKA_IBM_FIPS140=TRUE or those requests that explicitly ask for FIPS processing will
result in a failure return code.

• If a known answer test failed, all ICSF PKCS #11 callable services will be unavailable.

If the FIPSMODE option is not specified, the default is FIPSMODE(NO, FAIL(NO)).

Starting with ICSF FMID HCR77C0, the value for this option can be updated without restarting ICSF by
using either the SETICSF command or the ICSF Multi-Purpose service (CSFMPS or CSFMPS6).

HDRDATE(YES or NO)
This keyword is no longer supported, but is tolerated.

KDSREFDAYS(n)
Specifies, in days, how often a record should be written for a reference date/time change. A key is
referenced when it is used to perform a cryptographic operation. If a key is referenced ICSF will check
the date and time the key was referenced previous to the current reference. If the number of days
between the current date and time and the date and time the key was last referenced is greater than
or equal to the number of days specified in the KDSREFDAYS installation option then the key reference
date/time in the KDS will be updated to the current date and time. Otherwise the reference date/time
will remain the same. Note, in this context days are 24 hour periods not necessarily beginning or
ending at midnight.

For example: If KDSREFDAYS(7) was specified and a key was referenced on Monday, January 1st at 8
AM, and the reference date/time for the key was updated at that time, then any key reference before
Monday, January 8th at 8 AM (7 days) will not update the reference date/time in the key record. If the
key is referenced again at 7:50 AM on Monday, January 8th, the reference date/time for the key in the
KDS will remain January 1st at 8 AM because fewer than seven days have passed. The reference date/
time will not be updated until the next time the key is used again Monday, January 8th at 8 AM or
after.

KDSREFDAYS applies to all KDS that are in the format that supports key reference tracking. In an
environment of mixed KDS formats, where some support reference date tracking and some do not (for
example, the CKDS supports reference date tracking, but the PKDS does not) key references will not
be tracked for keys in a KDS does not support it, regardless on the value of KDSREFDAYS, until that
KDS is updated to the new format. In a SYSPLEX, all systems must be started with the same value of
KDSREFDAYS to ensure proper tracking of reference date/times.

KDSREFDAYS(0) means that ICSF will not keep track of key reference dates. The default is
KDSREFDAYS(1). The maximum value allowed is KDSREFDAYS(30).

Note: Updates to records using the Key Generator Utility Program (KGUP) are not subject to the value
specified in the KDSREFDAYS option. All updates made via KGUP will update the reference date/time
if the CKDS is in a format that supports reference date tracking (KDSR).

Starting with ICSF FMID HCR77C0, the value for this option can be updated without restarting ICSF by
using either the SETICSF command or the ICSF Multi-Purpose service (CSFMPS or CSFMPS6).

Chapter 2. Installation, initialization, and customization 45

KEYARCHMSG(YES or NO)
Controls whether a joblog message is issued when an application successfully references a key data
set record that has been archived. The message is only issued for the first successful reference of a
record. The results of the service request is not affected by this control. The default is NO.
Value

Indication
YES

ICSF issues a message the first time an archived record is referenced by an application.
NO

ICSF does not issue a message when an archived record is referenced by an application.

Starting with ICSF FMID HCR77C0, the value for this option can be updated without restarting ICSF by
using either the SETICSF command or the ICSF Multi-Purpose service (CSFMPS or CSFMPS6).

KEYAUTH(YES or NO)
This keyword is no longer supported, but is tolerated.

MASTERKCVLEN(2 or 3 or 4 or 5 or 6 or ALL)
Defines the number of hexadecimal digits to display on the ICSF Coprocessor Hardware Status panel
(CSFCMP40) for the verification and hash patterns for the master keys. The patterns are also referred
to as key check values. When an integer value is specified, that number of digits will be displayed.
When ALL is specified, all the digits will be displayed.

Defines the number of hexadecimal digits recorded in the SMF82KV field for the SMF 82, subtype 7
record. MASTERKCVLEN also limits the number of hexadecimal digits displayed when the D
ICSF,MKVPS command is issued. Regardless of the MASTERKCVLEN value, the maximum number of
hexadecimal digits displayed when the D ICSF,MKVPS command is issued is six.

The default is ALL.

This option can be used for compliance with the ISO11568 and other standards for the display of the
key check values for master keys.

Starting with ICSF FMID HCR77C0, the value for this option can be updated without restarting ICSF by
using either the SETICSF command or the ICSF Multi-Purpose service (CSFMPS or CSFMPS6).

MAXLEN(n)
Defines the maximum length of characters in a text string, including any necessary padding, for some
callable service requests. For example, this option defines the maximum length of the text the
encipher service encrypts for each call. Specify n as a decimal value from 1024 through 2147483647.
If you do not specify the MAXLEN option, the default value is MAXLEN(65535).

The MAXLEN parameter may still be specified in the options data set, but only the maximum value
limit will be enforced (2147483647). If a value greater than this is specified, an error will result and
ICSF will not start.

Note: MAXLEN is no longer displayed on the Installation Option Display panel.

MAXSESSOBJECTS(n)
Defines the maximum number of PKCS #11 session objects and states an unauthorized (problem
state, non-system key) application may own at any one time. Specify n as a decimal value from 1024
through 2147483647. If you do not specify the MAXSESSOBJECTS option, the default value is
MAXSESSOBJECTS(65535).

Starting with ICSF FMID HCR77C0, the value for this option can be updated without restarting ICSF by
using either the SETICSF command or the ICSF Multi-Purpose service (CSFMPS or CSFMPS6).

PKDSCACHE
This keyword is no longer supported, but is tolerated.

PKDSN(data-set-name)
Specifies the PKDS name the system uses to start ICSF. Whenever you restart ICSF, the PKDS named
in the PKDSN option becomes the active PKDS. (At first-time startup, you should specify the name of
an empty VSAM data set you created to use as the PKDS.)

46 z/OS: z/OS ICSF System Programmer's Guide

If you do not specify this keyword, you will not be able to use secure CCA asymmetric keys or use
ICSF to manage CCA asymmetric keys. ICSF must be restarted in order to switch between having a
PKDS and not having a PKDS.

See “Steps to create the installation options data set” on page 23 for the data set naming format
requirements.

REASONCODES(ICSF or TSS)
Specifies which set of reason codes are to be returned from callable services. If you do not specify the
REASONCODES option, the default of REASONCODES(ICSF) is used. If you specify
REASONCODES(TSS), reason codes used by the IBM 4765 PCIe, IBM 4767 PCIe, and IBM 4764 PCI-X
cryptographic coprocessors will be returned. If there is a 1-to-1 mapping, the codes will be converted.

If you specified REASONCODES(ICSF) and your service was processed on a CCA coprocessor, a
cryptographic coprocessor reason code may be returned if there is no corresponding ICSF reason
code.

REMOTEDEVICE(index-number, ip-addr-or-hostname, port-number, number-sockets)
Specifies the connection information for a remote regional cryptographic server device that ICSF is to
use for regional cryptographic server requests. There may be up to 16 of these entries.

Notes:

• Each regional cryptographic server (as identified by ip-addr-or-hostname and port-number) must be
configured identically regarding master keys and other settings. An incorrect master key value will
cause the connection to not be used.

• For use of standalone, network-attached regional cryptographic servers, IBM zEnterprise EC12 or
later hardware is required as well as servers running z/OS V1R13 or later and ICSF FMID HCR77B1
or later.

• For use of Linux LPAR regional cryptographic servers, IBM z13 or later hardware is required as well
as servers running z/OS V1R13 or later and ICSF FMID HCR77B1 or later.

The options are as follows:
index-number

Specify a number between 1 and 16, inclusive. Each operational REMOTEDEVICE must have a
unique number. For indexes that are repeated, ICSF will only save the last one specified.
Additionally, if remote devices are shared between sysplex members, it is strongly recommended
that the same index number is used for each member. This simplifies remote device management
using the SETICSF operator command.

ip-addr-or-hostname
Specify either the dotted-decimal Internet protocol (IP) version 4 address or the hostname of the
remote device. Each ip-addr-or-hostname must locate a single device with fixed serial number.
Reverse proxy arrangements where one ip-addr-or-hostname is backed by multiple devices (with
different serial numbers) is not supported. The opposite arrangement (one serial number assigned
to multiple ip-addr-or-hostnames) is supported, but not recommended.

Notes:

• Internet protocol (IP) version 6 is not supported.
• Hostnames are not case-sensitive and are stored and displayed by ICSF in lowercase.
• For long hostnames, the REMOTEDEVICE entry may be split at any comma to span multiple

physical records. For example:

REMOTEDEVICE(5,some.very.long.hostname.company.com,
6901,8)

port-number
Specify the port number to be used in conjunction with the IP address or hostname when
connecting.

Chapter 2. Installation, initialization, and customization 47

Note: No two ICSF instances may share the same port on a regional cryptographic server.
Additionally, it is expected that different workloads (for example, ICSF instances using different
token data sets) sharing a regional cryptographic server would use different master keys (RCS-
MKs) and that the required RCS-MK for the TKDS would be assigned on a per port basis.

number-sockets
Specify the maximum number of sockets ICSF is to open for connections with the remote device.
This is a value between 1 and 8, inclusive. Multiple sockets are required in order for ICSF to
process multiple simultaneous requests. Consult the remote device's documentation to determine
this value. There is an ICSF limit of 8 sockets per server or port. If you desire more than 8 socket
connections to a single server, define multiple REMOTEDEVICE entries for the server, assigning a
unique port number for each entry. Make sure the same master key is defined for each port that
will be connected to systems sharing the same TKDS.

RNGCACHE(YES or NO)
Indicates whether ICSF should maintain a cache of random numbers to be used by services that
require them. When YES is specified for this option, a noticeable performance improvement may be
realized by workloads requesting a significant amount of random data.

If you do not specify the RNGCACHE option, the default value is RNGCACHE(YES).

Value
Indication

YES
ICSF maintains a random number cache.

NO
ICSF does not maintain a random number cache.

Starting with ICSF FMID HCR77C0, the value for this option can be updated without restarting ICSF by
using either the SETICSF command or the ICSF Multi-Purpose service (CSFMPS or CSFMPS6).

SERVICE(service-number,load-module-name,FAIL(fail-option))
Indicates information about an installation-defined service.

ICSF allows an installation to define its own service similar to an ICSF callable service. The service-
number specifies a number that identifies the service to ICSF. The valid service numbers are 1 through
32767, inclusive. This set of service numbers is valid for both installation-defined services and UDX
services. The service number of an installation-defined service must not be the same as the service
number of a UDX service. The load-module-name is the name of the module that contains the service.
During ICSF startup, ICSF loads this module and binds it to the service-number you specified.

The fail-option is YES or NO, indicating the action ICSF should take if loading the service ends
abnormally.

YES
Specifies that ICSF ends abnormally if your service cannot be loaded.

NO
Specifies that ICSF continues to start if your service cannot be loaded.

If the service itself ends abnormally, ICSF does not end, but takes a system dump instead. The ICSF
service functional recovery routine (FRR) protects the service.

See Chapter 6, “Installation-defined Callable Services,” on page 205 for a description of how to write
and run an installation-defined callable service.

SERVICELIBS(YES or NO)
Indicates whether ICSF will be loaded using service data sets.
YES

Specifies that ICSF will be loaded using service data sets.
NO

Specifies that ICSF will not be loaded using service data sets and parameters SERVSCSFMOD0
and SERVSIEALNKE are ignored.

48 z/OS: z/OS ICSF System Programmer's Guide

If the SERVICELIBS option is not specified, the default is SERVICELIBS(NO).

For more information about utilizing service libraries, see “Dynamic service update” on page 132.

SERVSCSFMOD0(dsn[,volser])
Specifies the name of the service data set to be used in a dynamic service update for SCSFMOD0.
volser is optional. Must be specified in conjunction with SERVICELIBS(YES).
dsn

The data set name of the service data set.
volser

The volume of the service data set.

If the SERVSCSFMOD0 option is not specified, ICSF is initialized using LNKLST.

SERVSIEALNKE(dsn[,volser])
Specifies the name of the service data set to be used in a dynamic service update for SIEALNKE.
volser is optional. Must be specified in conjunction with SERVICELIBS(YES).
dsn

The data set name of the service data set.
volser

The volume of the service data set.

If the SERVSIEALNKE option is not specified, ICSF is initialized using LNKLST.

Example:

SERVICELIBS(YES)
SERVSCSFMOD0(CSF.SCSFMOD0,VOL177)
SERVSIEALNKE(SYS1.SIEALNKE,CSFDR1)

SSM(YES or NO)
Specifies whether or not an installation can enable special secure mode (SSM) while running ICSF.
SSM lowers the security of your system to let you enter clear keys and generate clear PINs. You must
enable SSM for KGUP to permit generation or entry of clear keys and to enable the secure key import,
secure key import2, multiple secure key import, or clear pin generate callable services.

YES
Indicates that you can enable the SSM.

NO
Indicates that you cannot enable the SSM.

If you do not specify the SSM option, the default value is SSM(NO).

The SSM option can be changed from NO to YES while ICSF is running by defining the
CSF.SSM.ENABLE SAF profile within the XFACILIT resource class. To revert to your startup option,
delete the CSF.SSM.ENABLE profile. The XFACILIT class must be refreshed after each change for it to
take effect.

Note: When using the SAF profiles to set the SSM, all ICSF instances sharing the SAF database will be
affected.

Starting with ICSF FMID HCR77C0, the value for this option can be updated without restarting ICSF by
using either the SETICSF command or the ICSF Multi-Purpose service (CSFMPS or CSFMPS6).

When the CSF.SSM.ENABLE SAF profile is defined within the XFACILIT resource class, attempts to
update the SSM option using either the SETICSF command or the ICSF Multi-Purpose service
(CSFMPS or CSFMPS6) will be ignored. The SSM option value will be saved and used should the
CSF.SSM.ENABLE SAF profile ever be deleted.

STATS(value1[,...,value3])
Enables usage tracking for various cryptographic statistics. Keywords may be combined to track
multiple statistics.

Chapter 2. Installation, initialization, and customization 49

ENG
Enables usage tracking of cryptographic engines. Supports Crypto Express cards, regional
cryptographic servers, CPACF, and software.

SRV
Enables usage tracking of cryptographic services. Supports ICSF callable services and UDXes only.

ALG
Enables usage tracking of cryptographic algorithms. Supports cryptographic algorithms that are
referenced in cryptographic operations. Limited support for key generation, key derivation, and
key import.

For more information on the cryptographic utilization statistics monitoring, see z/OS Cryptographic
Services ICSF Administrator's Guide.

STATSFILTERS(value)
Filters the criteria that is used to aggregate crypto usage statistics when STATS is enabled. Excluding
this option means that ICSF uses all available criteria (that is, HOME job id, HOME job name,
SECONDARY job name, HOME user id, task level user id, and ASID) to aggregate the crypto usage
statistics.
NOTKUSERID

Excludes the task level user id from the stats aggregation criteria. Enable this option in
environments that have a high volume of operations that are running under task level user ids.
This option reduces the number of SMF records written.

For more information on the cryptographic utilization statistics monitoring, see z/OS Cryptographic
Services ICSF Administrator's Guide.

SYSPLEXCKDS(YES or NO,FAIL(fail-option))

SYSPLEXCKDS(YES,FAIL(fail-option))
ICSF will join the ICSF sysplex group SYSICSF and this system will participate in sysplex-wide
consistency for CKDS data.
SYSPLEXCKDS(YES,FAIL(YES))

Indicates ICSF initialization will end abnormally if the ICSF cross-system services environment
cannot be established during ICSF initialization due to a failure creating the CKDS latch set or
a failure to join the ICSF sysplex group.

SYSPLEXCKDS(YES,FAIL(NO))
Indicates ICSF initialization processing will continue even if the request to join the ICSF
sysplex group fails. The system will not be notified of updates to the CKDS by other members
of the ICSF sysplex group. A value of either FAIL(YES) or FAIL(NO) will be ignored with
SYSPLEXCKDS(NO,...).

SYSPLEXCKDS(NO,FAIL(fail-option))
CKDS update processing proceeds as it does today (i.e. no Cross-System Services task will be
initialized, nor will any XCF signalling be performed when an update to a CKDS record occurs).

If you do not specify the SYSPLEXCKDS option, the default value is SYSPLEXCKDS(NO,FAIL(NO)).

SYSPLEXPKDS(YES or NO,FAIL(fail-option))
ICSF will join the ICSF sysplex group SYSICSF and this system will participate in sysplex-wide
consistency for PKDS data.

SYSPLEXPKDS(YES,FAIL(fail-option))
ICSF will join the ICSF sysplex group SYSICSFP and this system will participate in sysplex-wide
consistency for PKDS data.
SYSPLEXPKDS(YES,FAIL(YES))

Indicates ICSF initialization will fail to join the sysplex if the ICSF cross-system services
environment cannot be established during ICSF initialization due to a failure creating the PKDS
latch set or a failure to join the ICSF sysplex group.

50 z/OS: z/OS ICSF System Programmer's Guide

SYSPLEXPKDS(YES,FAIL(NO))
Indicates ICSF initialization processing will continue even if the request to join the ICSF
sysplex group fails. The system will not be notified of updates to the PKDS by other members
of the ICSF sysplex group. A value of either FAIL(YES) or FAIL(NO) will be ignored with
SYSPLEXPKDS(NO,...).

SYSPLEXPKDS(NO,FAIL(fail-option))
PKDS update processing proceeds without trying to join the ICSF sysplex group.

If you do not specify the SYSPLEXPKDS option, the default value is SYSPLEXPKDS(NO,FAIL(NO)).

SYSPLEXTKDS(YES or NO,FAIL(fail-option))

ICSF will join the ICSF sysplex group SYSICSF and this system will participate in sysplex-wide
consistency for TKDS data.

Note: TKDSN needs to be specified for this to work. See TKDSN(data-set-name).

SYSPLEXTKDS(NO,FAIL(fail-option))
Indicates no XCF signalling will be performed when an update to a TKDS record occurs.

SYSPLEXTKDS(YES,FAIL(fail-option))
Indicates the system will be notified of updates made to the TKDS by other members of the
sysplex who have also specified SYSPLEXTKDS(YES,FAIL(fail-option)).
SYSPLEXTKDS(YES,FAIL(YES))

Indicates ICSF will terminate abnormally if there is a failure creating the TKDS latch set.
SYSPLEXTKDS(YES,FAIL(NO))

Indicates ICSF initialization processing will continue even if the request to join the ICSF
sysplex group fails. This system will not be notified of updates to the TKDS by other members
of the ICSF sysplex group.

If you do not specify the SYSPLEXTKDS option, the default value is SYSPLEXTKDS(NO,FAIL(NO)) is
the default.

TKDSN(data-set-name)
The name of an existing TKDS or an empty VSAM data set to be used as the TKDS. To enable
applications to create and use persistent PKCS #11 tokens and objects that use the PKCS #11
services, this option must be specified.

See “Steps to create the installation options data set” on page 23 for the data set naming format
requirements.

TRACEENTRY(n)
This keyword is no longer supported, but is tolerated.

UDX(UDX-id,service-number,load-module-name,'comment_text',FAIL(fail-option))
ICSF allows the development of User Defined Extensions for the coprocessors. The UDX-id is supplied
to the installation when the UDX is developed. The service-number specifies a number that identifies
the service to ICSF. The valid service numbers are 1 to 32767, inclusive. This set of service numbers is
valid for both installation-defined services and UDX services. The service number of a UDX service
must not be the same as the service number of an installation-defined service. The load-module-
name is the name of the module that contains this service. During ICSF startup, ICSF loads this
module and binds it to the service-number that was specified. A comment may be specified. The
positional parameter is required. The comment consists of up to 40 EBCDIC characters, and may
include imbedded blank characters. The comment text is enclosed by single quotes. If no comment
text is desired, two contiguous single quotes should be specified.

The fail-option is YES or NO, indicating the action ICSF should take if loading the service ends
abnormally. If the service itself ends abnormally, ICSF does not end, but takes a system dump
instead.

YES
Specifies that ICSF ends abnormally if your service cannot be loaded.

Chapter 2. Installation, initialization, and customization 51

NO
Specifies that ICSF continues to start if your service cannot be loaded.

The User Defined Extension (UDX) is responsible for logging in SMF the results of any authorization
checks that were made.

USERPARM(value)
Specifies an 8-byte field for installation use. The Installation Option Display panel displays this value,
which is stored in the Cryptographic Communication Vector Table (CCVT) in the CCVT_USERPARM
field. An application program or installation exit can examine this field and use it to set system
environment information. The default is eight blanks.

Starting with ICSF FMID HCR77C0, the value for this option can be updated without restarting ICSF by
using either the SETICSF command or the ICSF Multi-Purpose service (CSFMPS or CSFMPS6).

WAITLIST(data_set_name)
This optional parameter can be used if you have ICSF with CICS installed. It specifies a customer
modifiable data set will be used to determine names of the services to be placed into the ICSF CICS
Wait List. A sample data set is provided by ICSF via member CSFWTL01 of SYS1.SAMPLIB. The
sample data set contains the same entries as the default ICSF CICS Wait List (i.e., the data set
contains the names of all ICSF callable services which, by default, will be driven through the CICS
TRUE). Non-CICS customers will not need to specify the WAITLIST keyword. The WAITLIST option
should be added to the Installation Options data set under these conditions.

• CICS customers who do not want to make use of CICS TRUE must either not enable the TRUE or
must specify a WAITLIST keyword and point to an empty wait list data set (or specify
WAITLIST(DUMMY)) in the Installation Options data set.

• CICS customers who wish to modify the ICSF default CICS Wait List should modify the sample Wait
List data set supplied in member CSFWTL01 of SYS1.SAMPLIB. The WAITLIST keyword in the
Installation Options Data Set should be set to point to this modified data set.

To ensure maximum performance, any existing CICS applications which invoke any of the ICSF
services in the Wait List that were linked with ICSF stubs prior to HCR7770 should be re-linked with
the current ICSF stubs. For additional information on the CICS Attachment Facility, see Appendix C,
“CICS-ICSF Attachment Facility,” on page 421.

Starting with ICSF FMID HCR77C0, the value for this option can be updated without restarting ICSF by
using either the SETICSF command or the ICSF Multi-Purpose service (CSFMPS or CSFMPS6).

Dispatching priority of ICSF
To avoid performance problems, the dispatching priority of ICSF should be set at least as high as that of
the highest task using ICSF.

Creating ICSF exits and generic services
You need not code any exits or generic services before using ICSF productively.

Developing callable service exits and generic services requires skill in assembler programming in a cross
memory environment. To help with testing, the system programmer might want to use the WTO macro
with the LINKAGE=BRANCH keyword to issue console messages while in cross-memory mode. (See
“Service exits” on page 161 for more information.)

52 z/OS: z/OS ICSF System Programmer's Guide

Chapter 3. Migration

This topic describes migration considerations.

Your plan for migrating to the new level of ICSF should include information from a variety of sources.
These sources of information describe topics such as coexistence, service, hardware and software
requirements, installation and migration procedures, and interface changes.

Attention: Although you are migrating to a new release, you should review the information in
Chapter 2, “Installation, initialization, and customization,” on page 11; especially review
customization steps that may have changed since your last migration.

If this migration also includes a hardware upgrade be sure to have your Master Keys available.
Once Migration is complete, the Master Keys may need to be loaded and set. Review Chapter 2,
“Installation, initialization, and customization,” on page 11 for information on setting Master Keys.

An IPL is required when installing a new release of ICSF (it is possible for ICSF control blocks like the
DACC and CCVT to persist in storage across an ICSF restart).

Consult these documents for information on migration and installation:
z/OS Migration

This publication describes the migration tasks for z/OS at a system and element level.

This publication, which is supplied with your product order, provides information about installing your
z/OS system. In addition to specific information about ICSF, this publication contains information
about all of the z/OS elements. Consult the z/OS Migration publication for the release of z/OS running
on your system.

z/OS Planning for Installation

This publication describes the installation requirements for z/OS at a system and element level. It
includes hardware, software, and service requirements for both the driving and target systems. It also
describes any coexistence considerations and actions.

Program Directory for Cryptographic Support for z/OS V2R1 - z/OS V2R3

This publication describes the program installation and maintenance requirements. It contains
information about the material and procedures associated with the installation of ICSF.

The publications can be obtained from:

• The Resource Link home page (www.ibm.com/servers/resourcelink). (Select Publications and then
select the release that you are interested in under ICSF Publications by FMID.)

• IBM z/OS downloads (www.ibm.com/systems/z/os/zos/downloads) for Cryptographic Support for
z/OS V2R1 - z/OS V2R3.

ServerPac Installing Your Order

This is the order-customized, installation publication for using the ServerPac Installation method. Be
sure to review 'Appendix A. Product Information', which describes data sets supplied, jobs or
procedures that have been completed for you, and product status. IBM may have run jobs or made
updates to PARMLIB or other system control data sets. These updates could affect your migration.

Terminology
This topic describes some terms you may need to know as you use this publication.

Migration
Activities that relate to the installation of a new version or release of a program to replace a previous
level. Completion of these activities ensures that the applications and resources on your system will
function correctly at the new level.

© Copyright IBM Corp. 2007, 2021 53

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/systems/z/os/zos/downloads

Coexistence
Two or more systems at different levels (for example, software, service or operational levels) that
share resources. Coexistence includes the ability of a system to respond in these ways to a new
function that was introduced on another system with which it shares resources: ignore a new function,
terminate gracefully, support a new function. These are examples of multisystem configurations in
which resource sharing can occur:

• A single system running multiple LPARs
• A single processor that is time-sliced to run different levels of the system (for example, during

different times of the day)
• Two or more systems running separate processors
• A Parallel Sysplex configuration (also includes a basic sysplex)

Migrating from earlier software releases
These topics describe common activities and considerations that should be considered when you migrate
from an earlier release of ICSF to FMID HCR77D0.

Actions to perform before installing ICSF FMID HCR77C0
This topic describes migration actions that you can perform on your current (old) system. You do not need
the ICSF FMID HCR77C0 level of code to make these changes, and the changes do not require the ICSF
FMID HCR77C0 level of code to run once they are made.

Note: You may have already performed these migration actions if you previously migrated to ICSF FMIDs
HCR77A1, HCR77B0, or HCR77B1.

ICSF: Detect any coprocessor that will not become active when ICSF FMID
HCR77A1 or later is started

Description
For ICSF FMIDS HCR7780, HCR7790, and HCR77A0, the activation procedure was designed to maximize
the number of active coprocessors by selecting the set of master keys that are available on the majority of
coprocessors. A DES master key is no longer required in order for a coprocessor to become active.
Instead, any one of four master keys – the DES master key, the AES master key, the RSA master key
(which in earlier releases was called the asymmetric master key), or the ECC master key – is enough for a
coprocessor to become active. However, because the goal is to select the combination of master keys that
will maximize the number of active coprocessors, if a certain master key is not set on all the same
coprocessors, that master key support will not be available.

Starting with FMID HCR77A1, the activation procedure now uses the master key verification patterns
(MKVP) in the header record of the CKDS and PKDS to determine which coprocessors become active. If
the MKVP of a master key is in the CKDS or PKDS, that master key must be loaded and the verification
pattern of the current master key register must match the MKVP in the CKDS or PKDS. If all of the MKVPs
in the CKDS and PKDS match the current master key registers, the coprocessor will become active.
Otherwise, the status is master keys incorrect. This applies to all master keys that the coprocessor
supports. When there is a MKVP in the CKDS or PKDS and the coprocessor does not support that master
key, it is ignored. When a MKVP is not in the CKDS or PKDS, the master key is ignored.

If there are no MKVPs in the CKDS and PKDS, the coprocessor will be active. If the CKDS is initialized
without any MKVPs, the CKDS cannot be used on a system that has cryptographic features installed.

Table 3 on page 54 provides more details about this migration action. Use this information to plan your
changes to the system.

Table 3. Information about this migration action

Element or feature: Cryptographic Services

54 z/OS: z/OS ICSF System Programmer's Guide

Table 3. Information about this migration action (continued)

When change was introduced: Cryptographic Support for z/OS V1R13 - z/OS V2R1
web deliverable (FMID HCR77A1), which installs on
z/OS V1R13 or z/OS V2R1.

Applies to migration from: z/OS V2R1 and z/OS V1R13, both without the
Cryptographic Support for z/OS V1R13 - z/OS V2R1
web deliverable (FMID HCR77A1) or a later ICSF
web deliverable installed.

Timing: Before installing FMID HCR77A1 or later ICSF
FMIDs.

Is the migration action required? Yes, if migrating from an ICSF FMID older than
HCR77A1 to ICSF FMID HCR77A1 or later and if
you are affected by the change in the way master
keys are processed to determine which
coprocessors become active.

Target system hardware requirements: None.

Target system software requirements: None.

Other system (coexistence or fallback)
requirements:

None.

Restrictions: None.

System impacts: None.

Related IBM Health Checker for z/OS check: Use check ICSFMIG77A1_COPROCESSOR_ACTIVE
to determine which coprocessors will not become
active when Cryptographic Support for z/OS V1R13
- z/OS V2R1 Web Deliverable (FMID HCR77A1) is
started. This check is delivered in APAR OA42011
available for ICSF FMIDs HCR7770, HCR7780,
HCR7790 and HCR77A0.

Steps to take
Run the migration check ICSFMIG77A1_COPROCESSOR_ACTIVE to find any coprocessors that will not
become active when you start ICSF FMID HCR77A1 or a later ICSF web deliverable.

Reference information
For more information, see the following reference:

• For information about IBM Health Checker, see IBM Health Checker for z/OS User's Guide.

ICSF: Detect TKDS objects that are too large for the new KDSR record format
in ICSF FMID HCR77A1 or later

Description
In ICSF FMID HCR77A1, ICSF added a common key data set record format for CCA key tokens and PKCS
#11 tokens and objects. This new record format adds new fields for key utilization and metadata.
Because of the size of the new fields, some existing PKCS #11 objects in the TKDS might cause ICSF to
fail. If you do not have a Token Data Set (TKDS) with PKDS #11 objects in it, there is no need to run this
check.

Chapter 3. Migration 55

The problem exists for TKDS object records with large objects. The User data field in the existing record
will cause the TKDS not be to loaded if the object size is greater that 32,520 bytes. The TKDSREC_LEN
field in the record has the size of the object. If the User data field is not empty and the size of the object
is greater than 32,520 bytes, the TKDS cannot be loaded.

Note that ICSF does not provide any interface to modify the User data field in the TKDS object record. A
field can be created using IDCAMS. Check the contents of the User data field and determine if the
information in the field is valuable. If you want to preserve the data, consider how the information can be
stored other than in the object record. The field can only be modified by editing the record. For
information about the TKDS object record, see “Token data set (TKDS) format” on page 241. The IBM
Health Checker migration check, ICSFMIG77A1_TKDS_OBJECT detects any TKDS object that is too large
to allow the TKDS is read into storage during ICSF initialization starting with ICSF FMID HCR77A1. This
migration check is available for ICSF FMIDs HCR7770, HR7780, HCR7790, and HCR77A0 through APAR
OA42011

Table 4 on page 56 provides more details about this migration action. Use this information to plan your
changes to the system.

Table 4. Information about this migration action

Element or feature: Cryptographic Services

When change was introduced: Cryptographic Support for z/OS V1R13 – z/OS
V2R1 web deliverable (FMID HCR77A1), which
installs on z/OS V1R12, z/OS V1R13 or z/OS V2R1.

Applies to migration from: z/OS V2R1 and z/OS V1R13, both without the
Cryptographic Support for z/OS V1R13 - z/OS V2R1
web deliverable (FMID HCR77A1) installed.

Timing: Before installing FMID HCR77A1 or later ICSF
FMIDs.

Is the migration action required? Yes, if migrating from an ICSF FMID older than
HCR77A1 to ICSF FMID HCR77A1 or later and if
you affected by the record format changes.

Target system hardware requirements: None.

Target system software requirements: None.

Other system (coexistence or fallback)
requirements:

None.

Restrictions: None.

System impacts: None.

Related IBM Health Checker for z/OS check: Use the IBM Health Checker migration check
ICSFMIG77A1_TKDS_OBJECT to detect any TKDS
object with a value in the User data field that is
too large to preserve in the User data field of the
new format record. This migration check is
available for FMIDs HCR7770, HR7780, HCR7790,
and HCR77A0 through APAR OA42011.

Steps to take
Run the migration check ICSFMIG77A1_TKDS_OBJECT to detect if TKDS objects are too large for the new
record format in FMID HCR77A1.

Note: ICSF does not provide any interface to modify the User data field in the TKDS object record. A flat
file can be created using IDCAMS. Check the contents of the User data field and determine if the
information in the field is valuable. If you want to preserve the data, consider how the information can be

56 z/OS: z/OS ICSF System Programmer's Guide

stored other than in the object record. The field can only be modified by editing the record. For
information about the TKDS object record, see “Token data set (TKDS) format” on page 241.

Reference information
For more information, see the following references:

• For information about the TKDS object record, see “Token data set (TKDS) format” on page 241.
• For information about IBM Health Checker, see IBM Health Checker for z/OS User's Guide.

Actions to perform before the first start of ICSF FMID HCR77C0
This topic describes migration actions that you can perform after you have installed ICSF FMID HCR77C0,
but before the first time you start it. These actions might require the ICSF FMID HCR77C0 level of code to
be installed, but does not require it to be started.

Note: You may have already performed these migration actions if you previously migrated to ICSF FMIDs
HCR77A1, HCR77B0, or HCR77B1.

ICSF: Deprecated parameters in installation options data set

Description
The ICSF installation options data set parameters COMPENC and PKDSCACHE were deprecated in FMID
HCR7751, parameters CKTAUTH, KEYAUTH, and TRACEENTRY were deprecated in FMID HCR77A1, and
parameter HDRDATE was deprecated in FMID HCR77B1.

Table 5. Information about this migration action

Element or feature: Cryptographic Services.

When change was introduced: ICSF FMID HCR77B1.

Applies to migration from: All ICSF FMIDs prior to FMID HCR77B1.

Timing: Before the first start of FMID HCR77B1 or later
ICSF FMIDs.

Is the migration action required? Yes.

Target system hardware requirements: None.

Target system software requirements: None.

Other system (coexistence or fallback)
requirements:

None.

Restrictions: None.

System impacts: None.

Related IBM Health Checker for z/OS check: None.

Steps to take
Edit the ICSF installation options data set and remove all the deprecated parameters.

Note: ICSF will start with the deprecated parameters in the ICSF installation options data set, but the
parameters are ignored and message CSFO0212 is issued for each deprecated parameter.

Reference information
For more information, see “Customizing ICSF after the first start” on page 33.

Chapter 3. Migration 57

ICSF: Determine if applications using hash services have archived hashes of
long data

Description
Due to service introduced by APAR OA43937, new Hash Method Rule keywords for the ICSF One-Way
Hash Generate (CSNBOWH or CSNBOWH1 and CSNEOWH or CSNEOWH1) and PKCS11 One-Way Hash
Services (CSFPOWH and CSFPOWH6) will support generation of legacy hash values for verification of
archived hash values generated from pre-OA43937 releases of ICSF FMIDs HCR7770 through HCR77A1.

Note: This correction of hashing function does not apply to the case where the sum of the length of
hashed text over a series of chained calls exceeds 256 megabytes (or 512, as described further in this
topic), but no single invocation supplies an input text_length that exceeds 256 (or 512) megabytes.
Correct hashes are created when no single invocation of the callable services exceeds the described limit
prior to (and after) application of the PTFs for OA43937.

Applications that wish to verify archived hash values created by pre-OA43937 FMID HCR7770 through
FMID HCR77A1 releases of ICSF callable services One-Way Hash Generate and PKCS11 One-Way Hash
may need to invoke these callable services with new rule array keywords that support the creation of
legacy hash values. The hash generated using the new rule array keywords must be used to verify the
archived hash values.

The ICSF Callable Services One-Way Hash Generate and PKCS11 One-Way Hash, sign, or verify have
corrected the way they create hash values when the length of the text on a single invocation of one of
these services supplies an input text_length that equals or exceeds 256 megabytes (512 megabytes on
z990/z890 or later hardware on FMID HCR7770). The hashing services are corrected with the application
of the PTFs for OA43937.

Table 6 on page 58 provides more details about this migration action. Use this information to plan your
changes to the system.

Table 6. Information about this migration action

Element or feature: Cryptographic Services.

When change was introduced: PTFs for OA43937, which are applicable to: ICSF
FMIDs HCR7770 - HCR77A1 (z/OS V1R12 - z/OS
V2R1).

Applies to migration from: ICSF FMIDs HCR7770 - HCR77A1, without the PTF
for OA43937.

Timing: Before the first start of FMID HCR77A1 or later
ICSF FMIDs.

Is the migration action required? Yes, if migrating from an ICSF FMID older than
HCR77A1 to ICSF FMID HCR77A1 or later and if
you have archived hash values created before the
installation of the PTFs for OA43937 which meet
the length restrictions described here.

Target system hardware requirements: None.

Target system software requirements: None.

Other system (coexistence or fallback)
requirements:

None.

Restrictions: None.

System impacts: If you do not use the legacy rule array keywords for
affected applications, then the application may fail
to verify the legacy hashes/signatures.

58 z/OS: z/OS ICSF System Programmer's Guide

Table 6. Information about this migration action (continued)

Related IBM Health Checker for z/OS check: None.

Steps to take
Follow these steps:

1. Identify if your application needs to verify archived hash values created by either of the ICSF callable
service One-Way Hash Generate (CSNBOWH or CSNBOWH1 and CSNEOWH or CSNEOWH1) or PKCS11
One-Way Hash (CSFPOWH and CSFPOWH6) on releases pre-OA43937 at FMID HCR7770 through
FMID HCR77A1. (See the ICSF Application Programmer's Guide documentation changes in this APAR
for new ICSF callable service keywords that support the creation of hashes for the verification of
archived hash values and the input text length requirements.)

2. If your application has these archived hash values and intends to verify them, then invocations of ICSF
callable services One-Way Hash Generate, PKCS11 One-Way Hash, sign, or verify that create hashes
for verification of the archived hash values may need to be updated to use the new legacy rule array
keywords (ONLY if those archived hash values were created with input text length exceeding the limits
described).

Reference information
For more information, see z/OS Cryptographic Services ICSF Application Programmer's Guide .

Actions to perform after the first start of ICSF FMID HCR77C0
This topic describes migration actions that you can perform only after you have started ICSF FMID
HCR77C0. You need ICSF FMID HCR77C0 started to perform these actions.

Note: You may have already performed these migration actions if you previously migrated to ICSF FMIDs
HCR77A1, HCR77B0, or HCR77B1.

ICSF: Accommodate the TRACEENTRY option deprecation

Description
In ICSF FMID HCR77A1 and later, option TRACEENTRY has been deprecated and ICSF CTRACE support
has been enhanced to support configurable ICSF CTRACE options from PARMLIB. A default CTICSF00
PARMLIB member is installed in SYS1.PARMLIB. The CTICSF00 PARMLIB member provides default
component trace values for ICSF. By default, ICSF CTRACE support will trace with the KdsIO, CardIO, and
SysCall filters using a 2M buffer. Configurable options are commented out within this PARMLIB member to
provide examples of how to turn them on.

Table 7 on page 59 provides more details about this migration action. Use this information to plan your
changes to the system.

Table 7. Information about this migration action

Element or feature: Cryptographic Services

When change was introduced: Cryptographic Support for z/OS V1R13 - z/OS V2R1
web deliverable (FMID HCR77A1), which installs
only on z/OS V1R13 or z/OS V2R1.

Applies to migration from: z/OS V2R1 and z/OS V1R13 without the
Cryptographic Support for z/OS V1R13 - z/OS V2R1
web deliverable (FMID HCR77A1). Note that when
the Cryptographic Support for z/OS V1R13 - z/OS
V2R1 Web deliverable (FMID HCR77A1) or later is
not installed, this migration item is not applicable.

Chapter 3. Migration 59

Table 7. Information about this migration action (continued)

Timing: After the first start of ICSF FMID HCR77B0.

Is the migration action required? Yes, if you have installed the Cryptographic Support
for z/OS V1R13 - z/OS V2R1 web deliverable (FMID
HCR77A1) or later to handle TKDS with PKDS #11
objects for the new format in FMID HCR77A1 or
later.

Target system hardware requirements: None.

Target system software requirements: None.

Other system (coexistence or fallback)
requirements:

None.

Restrictions: None.

System impacts: If the TRACEENTRY option is specified it will be
ignored and will produce message CSFO0212 at
startup; processing continues.

Related IBM Health Checker for z/OS check: None.

Steps to take
You can code the new CTRACE option within a BEGIN(HCR77A1) END option pair in a options data set
shared between multiple releases of ICSF.

• If you share the installation options data set between FMID HCR77A1 and pre-FMID HCR77A1 systems,
you can continue to supply the TRACEENTRY option at the lower-level systems as it is ignored, and
processing will continue on the FMID HCR77A1 systems.

• If your installation cannot tolerate the CSFO0212 message that is issued at startup, you need to use
different installation option data sets. Note that new CTRACE options will be in effect:

– Review the default CTRACE options to ensure that they are satisfactory for your system.
– Make any necessary changes. Use the CTICSF00 PARMLIB to create customized ICSF CTRACE

Configuration Data Sets in PARMLIB. You can use the new CTRACE option to specify the customized
ICSF CTRACE Configuration Data Set in the ICSF Options Data Set.

For example, you can specify CTRACE(CTICSFxx), where xx is any two characters that were used
when copying the default CTICSF00 parmlib member.

Component tracing is active when ICSF starts using the trace options defined in the CTICSFxx
PARMLIB member, where 00 is the default. If the CTICSF00 PARMLIB member is incorrect or
missing, ICSF CTRACE performs tracing using an internal default set of trace options. The operator
can specify trace options individually on the TRACE CT command or specify the name of a CTICSFxx
PARMLIB member containing the desired trace options. Using a PARMLIB member on the TRACE CT
command can help minimize operator intervention and avoid syntax or keystroke errors

Reference information
For more information, see the following references:

• z/OS Cryptographic Services ICSF Administrator's Guide
• For IBM Health Checker, see IBM Health Checker for z/OS User's Guide.

60 z/OS: z/OS ICSF System Programmer's Guide

Callable services
The following table summarizes the new and changed callable services for ICSF FMID HCR77D0. For
complete reference information on these callable services, see z/OS Cryptographic Services ICSF
Application Programmer's Guide.

Table 8. Summary of new and changed ICSF callable services

Callable service FMID Description

Ciphertext Translate2 HCR77D0
OA57089

Changed: Support compliant-tagged AES key tokens.

CKDS Key Record Read2 HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

Clear PIN Encrypt HCR77D0
OA57089

Changed: Support compliant-tagged AES key tokens.

Digital Signature
Generate

HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

Digital Signature Verify HCR77D0
OA57089

Changed:

• Support compliant-tagged key tokens.
• Support X.509 certificates.

Diversified Key
Generate2

HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

Diversify Directed Key HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

DK Deterministic PIN
Generate

HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

DK Migrate PIN HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

DK PAN Modify in
Transaction

HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

DK PAN Translate HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

DK PIN Change HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

DK PIN Verify HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

DK PRW Card Number
Update

HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

DK PRW Card Number
Update2

HCR77D0
OA57089

New: Enhanced processing for PIN blocks for cards.

DK PRW CMAC Generate HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

DK Random PIN
Generate

HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

DK Random PIN
Generate2

HCR77D0
OA57089

New: Enhanced processing for PIN blocks for cards.

Chapter 3. Migration 61

Table 8. Summary of new and changed ICSF callable services (continued)

Callable service FMID Description

DK Regenerate PRW HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

Encrypted PIN
Translate2

HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

Field Level Decipher HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

Field Level Encipher HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

Key Generate2 HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

Key Test2 HCR77D0
OA57089

Changed: Support compliant-tagged AES key tokens.

MAC Generate2 HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

MAC Verify2 HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

PKA Decrypt HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

PKA Encrypt HCR77D0
OA57089

Changed:

• Support compliant-tagged key tokens.
• Support X.509 certificates.

PKA Key Generate HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

PKA Key Import HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

PKA Key Translate HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

Public Infrastructure
Certificate

HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

Random Number
Generate Long

HCR77D0
OA57089

Changed: Support TR-34 protocol key distribution.

Restrict Key Attribute HCR77D0
OA57089

Changed: Support compliant-tagged AES key tokens.

Symmetric Algorithm
Decipher

HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

Symmetric Algorithm
Encipher

HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

Symmetric Key Decipher HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

Symmetric Key Encipher HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

62 z/OS: z/OS ICSF System Programmer's Guide

Table 8. Summary of new and changed ICSF callable services (continued)

Callable service FMID Description

Symmetric Key Export HCR77D0
OA57089

Changed:

• Support compliant-tagged key tokens.
• Support X.509 certificates.

Symmetric Key
Generate

HCR77D0
OA57089

Changed:

• Support compliant-tagged key tokens.
• Support X.509 certificates.

Symmetric Key Import HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

Symmetric Key Import2 HCR77D0
OA57089

Changed: Support compliant-tagged key tokens.

TR-31 Export HCR77D0
OA57089

Changed:

• Support TR-34 protocol key distribution.
• Support compliant-tagged AES key tokens.

TR-31 Import HCR77D0
OA57089

Changed:

• Support TR-34 protocol key distribution.
• Support compliant-tagged AES key tokens.

TR-34 Bind-Begin HCR77D0
OA57089

New: Support TR-34 protocol bind processing.

TR-34 Bind-Complete HCR77D0
OA57089

New: Support TR-34 protocol bind processing.

TR-34 Key Distribution HCR77D0
OA57089

New: Support TR-34 protocol key distribution.

TR-34 Key Receive HCR77D0
OA57089

New: Support TR-34 protocol key distribution.

Encrypted PIN
Translate2

HCR77C1
OA58306

Changed: Additional requirements for AES PINPROT input PIN
encrypting key. New access control.

Key Token Build2 HCR77C1
OA58306

Changed: New key usages for AES PINPROT keys.

Encrypted PIN
Translate2

HCR77C1
OA57088

Changed: New key usage for AES MAC authentication key.

Control Vector Generate HCR77C1
OA55184

Changed: New rule array keywords in support of triple-length
DES keys.

Diversify Directed Key HCR77C1
OA55184

New: DK PIN support for diversified keys.

Key Part Import HCR77C1
OA55184

Changed: New rule array keywords in support of triple-length
DES keys.

Key Test HCR77C1
OA55184

Changed: New rule array keyword in support of triple-length
encrypted DES keys.

Key Test2 HCR77C1
OA55184

Changed: New rule array keyword in support of triple-length
encrypted DES keys.

Chapter 3. Migration 63

Table 8. Summary of new and changed ICSF callable services (continued)

Callable service FMID Description

Key Test Extended HCR77C1
OA55184

Changed: New rule array keyword in support of triple-length
encrypted DES keys.

Key Token Build HCR77C1
OA55184

Changed: New rule array keyword in support of triple-length DES
keys.

Key Token Build2 HCR77C1
OA55184

Changed: Support for new AES key attributes and KDKGENKY key
type.

TR-31 Export HCR77C1
OA55184

Changed: Support for ISO-20038 AES key blocks and AES key-
encrypting keys.

TR-31 Import HCR77C1
OA55184

Changed: Support for ISO-20038 AES key blocks and AES key-
encrypting keys

Authentication
Parameter Generate

HCR77C1 Changed: Support compliant-tagged key tokens.

Ciphertext Translate2 HCR77C1 Changed: Support compliant-tagged key tokens.

Clear PIN Encrypt HCR77C1 Changed: Support compliant-tagged key tokens.

Clear PIN Generate HCR77C1 Changed: Support compliant-tagged key tokens.

Clear PIN Generate
Alternate

HCR77C1 Changed: Support compliant-tagged key tokens.

Control Vector Generate HCR77C1 Changed: Generate control vector with the compliant-tag bit on.

Cryptographic Usage
Statistic

HCR77C1 New: Track cryptographic usage external to the ICSF address
space.

Decipher HCR77C1 Changed: Support compliant-tagged key tokens.

Derive ICC MK HCR77C1 Changed: Derive compliant-tagged key tokens.

Derive Session Key HCR77C1 Changed: Derive compliant-tagged key tokens.

Digital Signature Verify HCR77C1 Changed: Allow signature verification using an X.509 digital
certificate.

Diversified Key Generate HCR77C1 Changed: Generate compliant-tagged key tokens.

EMV Scripting Service HCR77C1 Changed: Support compliant-tagged key tokens.

EMV Transaction (ARQC/
ARPC) Service

HCR77C1 Changed: Support compliant-tagged key tokens.

EMV Verification
Functions

HCR77C1 Changed: Support compliant-tagged key tokens.

Encipher HCR77C1 Changed: Support compliant-tagged key tokens.

Encrypted PIN Generate HCR77C1 Changed: Support compliant-tagged key tokens.

Encrypted PIN Translate HCR77C1 Changed: Support compliant-tagged key tokens.

Encrypted PIN Translate
Enhanced

HCR77C1 Changed: Support compliant-tagged key tokens.

Encrypted PIN Verify HCR77C1 Changed: Support compliant-tagged key tokens.

Field Level Decipher HCR77C1 Changed: Version 05 AES CIPHER key tokens allowed.

Field Level Encipher HCR77C1 Changed: Version 05 AES CIPHER key tokens allowed.

64 z/OS: z/OS ICSF System Programmer's Guide

Table 8. Summary of new and changed ICSF callable services (continued)

Callable service FMID Description

FPE Decipher HCR77C1 Changed: Support compliant-tagged key tokens.

FPE Encipher HCR77C1 Changed: Support compliant-tagged key tokens.

FPE Translate HCR77C1 Changed: Support compliant-tagged key tokens.

Generate Issuer MK HCR77C1 Changed: Generate compliant-tagged key token.

ICSF Query Facility HCR77C1 Changed: Retrieve compliance data for a CCA coprocessor.

ICSF Query Facility2 HCR77C1 Changed: Retrieve CCA compliance information for the system.

Key Export HCR77C1 Changed: Support compliant-tagged key tokens.

Key Generate HCR77C1 Changed: Generate compliant-tagged key tokens.

Key Import HCR77C1 Changed: Support compliant-tagged key tokens.

Key Record Read2 HCR77C1 Changed: Returns protected key for version 05 AES CIPHER key
tokens.

Key Test HCR77C1 Changed: Support compliant-tagged key tokens.

Key Test2 HCR77C1 Changed:

• Calculate a 3-byte or 5-byte CMACZERO verification pattern for
DES keys.

• Support compliant-tagged key tokens.

Key Test Extended HCR77C1 Changed: Support compliant-tagged key tokens.

Key Token Build HCR77C1 Changed: Generate compliant-tagged key token skeleton.

Key Token Build2 HCR77C1 Changed: Build version 05 key tokens that can be exported to
CPACF protected key format.

Key Translate HCR77C1 Changed: Support compliant-tagged key tokens.

Key Translate2 HCR77C1 Changed: Support compliant-tagged key tokens.

MAC Generate HCR77C1 Changed: Support compliant-tagged key tokens.

MAC Verify HCR77C1 Changed: Support compliant-tagged key tokens.

PIN Change/Unblock HCR77C1 Changed: Support compliant-tagged key tokens.

Prohibit Export HCR77C1 Changed: Support compliant-tagged key tokens.

Prohibit Export
Extended

HCR77C1 Changed: Support compliant-tagged key tokens.

Public Infrastructure
Certificate

HCR77C1 New: Create a certificate signing request.

Recover PIN from Offset HCR77C1 Changed: Support compliant-tagged key tokens.

Restrict Key Attribute HCR77C1 Changed: Support compliant-tagged key tokens.

Secure Messaging for
PINs

HCR77C1 Changed: Support compliant-tagged key tokens.

Symmetric Key Decipher HCR77C1 Changed: Version 05 AES CIPHER key tokens allowed.

Symmetric Key Encipher HCR77C1 Changed: Version 05 AES CIPHER key tokens allowed.

Chapter 3. Migration 65

Table 8. Summary of new and changed ICSF callable services (continued)

Callable service FMID Description

TR-31 Export HCR77C1 Changed: Support compliant-tagged key tokens.

TR-31 Import HCR77C1 Changed: Support compliant-tagged key tokens.

Transaction Validation HCR77C1 Changed: Support compliant-tagged key tokens.

Unique Key Derive HCR77C1 Changed: Derive compliant-tagged key tokens.

VISA CVV Service
Generate

HCR77C1 Changed: Support compliant-tagged key tokens.

VISA CVV Service Verify HCR77C1 Changed: Support compliant-tagged key tokens.

Digital Signature
Generate

HCR77C0 Changed: Support for RSA-PSS digital signature scheme.

Digital Signature Verify HCR77C0 Changed: Support for RSA-PSS digital signature scheme.

Key Data Set List HCR77C0 Changed: New option to list unsupported CCA key in CKDS and
PKDS.

PKA Key Generate HCR77C0 Changed: Support for additional RSA public exponent values.

PKA Key Token Build HCR77C0 Changed: Support for additional RSA public exponent values.

Support for RSA-PSS digital signature scheme.

PKA Key Translate HCR77C0 Changed: Support for RSA-PSS digital signature scheme.

ECC Diffie-Hellman HCR77B1 Changed: Support for new derivation algorithm.

Encrypted PIN Translate
Enhanced

HCR77B1 New: Reformat a PIN block where the PAN data is encrypted
Visa Data Secure Platform (Visa DSP) processing.

Key Encryption
Translate

HCR77B1 New: Change the method of encryption of DES key material.

Key Test2 HCR77B1 Changed: Support new key check value algorithm based on
CMAC for DES and AES.

PKA Key Token Build HCR77B1 Changed: Support for key derivation section for EC private keys
added.

Symmetric Key Decipher HCR77B1 Changed: Support Galois/Counter Mode for AES.

Symmetric Key Decipher HCR77B1 Changed: Support Galois/Counter Mode for AES.

Field Level Decipher HCR77B0 New: Decrypt data base fields, preserving the format of the
fields using the VISA Format Preserving Encryption algorithm.

Field Level Encipher HCR77B0 New: Encrypt data base fields, preserving the format of the fields
using the VISA Format Preserving Encryption algorithm.

FPE Decipher HCR77B0 New: Decrypt payment card data using Visa Data Secure
Platform (Visa DSP) processing.

FPE Encipher HCR77B0 New: Encrypt payment card data using Visa Data Secure
Platform (Visa DSP) processing.

FPE Translate HCR77B0 New: Translate payment card data from encryption under one
key to encryption under another key using Visa Data Secure
Platform (Visa DSP) processing.

66 z/OS: z/OS ICSF System Programmer's Guide

Table 8. Summary of new and changed ICSF callable services (continued)

Callable service FMID Description

ICSF Multi-Purpose
Service

HCR77B0 New: Validate the keys in the active CKDS or PKDS.

Key Data Set List HCR77B0 New: Generate a list of labels or handles that match a label filter
and metadata search criteria in an active key data set.

Key Data Set Metadata
Read

HCR77B0 New: Read metadata for a record in an active key data set.

Key Data Set Metadata
Write

HCR77B0 New: Add, delete, and change metadata for a list of records in an
active key data set.

PKCS #11 One-way hash
generate

HCR77B0 Changed: Legacy hash rules added.

PKCS11 One-way hash,
sign, or verify

HCR77B0 Changed: Legacy hash rules added.

CCA access control
The following table summarizes the new and changed CCA access controls for ICSF FMID HCR77D0. For
complete reference information on these CCA access controls, see z/OS Cryptographic Services ICSF
Application Programmer's Guide.

Table 9. Summary of new and changed CCA access controls

Access control Description FMID or APAR
number

Services
affected

Offset

Disable 56-bit length DES keys New HCR77D0
OA60165

All CCA callable
services that
accept or
generate 56-bit
length DES keys.

0026

Disable 56-bit effective length DES keys New HCR77D0
OA60165

All CCA callable
services that
accept or
generate 56-bit
effective length
DES keys
including loading
master keys.

0027

Disable RSA keys with less than 1024-bit
modulus length

New HCR77D0
OA60165

All CCA callable
services that
accept or
generate RSA
keys with less
than 1024-bit
modulus length.

002B

Chapter 3. Migration 67

Table 9. Summary of new and changed CCA access controls (continued)

Access control Description FMID or APAR
number

Services
affected

Offset

Disable RSA keys with less than 2048-bit
modulus length

New HCR77D0
OA60165

All CCA callable
services that
accept or
generate RSA
keys with less
than 2048-bit
modulus length.

002C

Disable ECC keys weaker than 224-bit New HCR77D0
OA60165

All CCA callable
services that
accept or
generate ECC
keys weaker than
224-bit.

004D

DK Random PIN Generate2 New HCR77D0
OA57089

CSNBDRG2 0024

DK PRW Card Number Update2 New HCR77D0
OA57089

CSNBDCU2 0025

TR-34 Bind-Begin New HCR77D0
OA57089

CSNDT34B 01F0

TR-34 Bind-Begin - allow BINDCR New HCR77D0
OA57089

CSNDT34B 01F1

TR-34 Bind-Begin - allow UNBINDCR New HCR77D0
OA57089

CSNDT34B 01F2

TR-34 Bind-Begin - allow REBINDCR New HCR77D0
OA57089

CSNDT34B 01F3

TR-34 Bind-Complete New HCR77D0
OA57089

CSNDT34C 01F4

TR-34 Bind-Complete - allow BINDKRDC New HCR77D0
OA57089

CSNDT34C 01F5

TR-34 Bind-Complete - allow BINDRV New HCR77D0
OA57089

CSNDT34C 01F6

TR-34 Bind-Complete - allow UNBINDRV New HCR77D0
OA57089

CSNDT34C 01F7

TR-34 Bind-Complete - allow REBINDRV New HCR77D0
OA57089

CSNDT34C 01F8

TR-34 Key Distribution New HCR77D0
OA57089

CSNDT34D 01F9

TR-34 Key Distribution – allow 2PASSCRE New HCR77D0
OA57089

CSNDT34D 01FA

TR-34 Key Distribution – allow 1PASSCRE New HCR77D0
OA57089

CSNDT34D 01FB

TR-34 Key Receive New HCR77D0
OA57089

CSNDT34R 01FC

68 z/OS: z/OS ICSF System Programmer's Guide

Table 9. Summary of new and changed CCA access controls (continued)

Access control Description FMID or APAR
number

Services
affected

Offset

TR-34 Key Receive – allow 2PASSRCV New HCR77D0
OA57089

CSNDT34R 01FD

TR-34 Key Receive – allow 1PASSRCV New HCR77D0
OA57089

CSNDT34R 01FE

Permit X.509 without PKI root validation New HCR77D0
OA57089

CSNDDSV
CSNDPKE
CSNDSYX
CSNDSYG
CSNDT34B
CSNDT34C
CSNDT34D
CSNDT34R

01FF

TR-34 Key Receive – allow wrapping method
override keywords

New HCR77D0
OA57089

CSNDT34R 01DF

TR-34 Key Distribution - permit DES EXPORTER
to K0 or K1

New HCR77D0
OA57089

CSNDT34D 0242

TR-34 Key Distribution - permit DES IMPORTER
to K0 or K1

New HCR77D0
OA57089

CSNDT34D 0243

TR-34 Key Distribution - permit AES EXPORTER
to K0

New HCR77D0
OA57089

CSNDT34D 0244

TR-34 Key Distribution - permit AES EXPORTER
to K1

New HCR77D0
OA57089

CSNDT34D 0245

TR-34 Key Distribution - permit AES IMPORTER
to K0

New HCR77D0
OA57089

CSNDT34D 0246

TR-34 Key Distribution - permit AES IMPORTER
to K1

New HCR77D0
OA57089

CSNDT34D 0247

TR-34 Key Receive – permit DES EXPORTER New HCR77D0
OA57089

CSNDT34R 0248

TR-34 Key Receive – permit DES IMPORTER New HCR77D0
OA57089

CSNDT34R 0249

TR-34 Key Receive – permit AES EXPORTER New HCR77D0
OA57089

CSNDT34R 024A

TR-34 Key Receive – permit AES IMPORTER New HCR77D0
OA57089

CSNDT34R 024B

TR-34 Key Receive – permit AES EXPORTER
with EXPTT31D

New HCR77D0
OA57089

CSNDT34R 024C

TR-34 Key Receive – permit AES IMPORTER
with IMPTT31D

New HCR77D0
OA57089

CSNDT34R 024D

PKA Key Translate – allow COMP-TAG New HCR77D0
OA57089

CSNDPKT 01EE

PKA Key Translate – allow COMP-CHK New HCR77D0
OA57089

CSNDPKT 01EF

Chapter 3. Migration 69

Table 9. Summary of new and changed CCA access controls (continued)

Access control Description FMID or APAR
number

Services
affected

Offset

PKA Key Translate – allow INTUSCHG New HCR77D0
OA57089

CSNDPKT 02EE

Disallow PIN block format ISO-1 New HCR77C1
OA58306

CSNBCPE
CSNBCPA
CSNBEPG
CSNBPTR
CSNBPTRE
CSNBPTR2
CSNBPVR
CSNBPCU
CSNBPFO
CSNBSPN
CSNBDMP
CSNBDPMT
CSNBDPC
CSNBDPV

032F

Encrypted PIN Translate2 - Permit ISO-4 to
ISO-1 RFMT4TO1

New HCR77C1
OA58306

CSNBPTR2 0394

Encrypted PIN Translate2 - Permit ISO-4 to
ISO-4 PTR2AUTH

New HCR77C1
HCR77D0
OA57088

CSNBPTR2 0395

Disallow translation from AES wrapping to DES
wrapping

New HCR77C1
OA55184

CSNBKTR2
CSNBPTR2
CSNDPKT

01C5

Disallow translation from AES wrapping to
weaker AES wrapping

New HCR77C1
OA55184

CSNBKTR2
CSNBPTR2
CSNDPKT

01C6

Disallow translation from DES wrapping to
weaker DES wrapping

New HCR77C1
OA55184

CSNBAPG
CSNBEPG
CSNBKTR
CSNBKTR2
CSNBPFO
CSNBPTR
CSNBPTRE
CSNBPTR2
CSNBSKY
CSNDPKT

01C7

Diversify Directed Key New HCR77C1
OA55184

CSNBDDK 0080

Diversify Directed Key – Allow KDFFM DERIVE New HCR77C1
OA55184

CSNBDDK 0081

Diversify Directed Key – Allow KDFFM
GENERATE

New HCR77C1
OA55184

CSNBDDK 0082

70 z/OS: z/OS ICSF System Programmer's Guide

Table 9. Summary of new and changed CCA access controls (continued)

Access control Description FMID or APAR
number

Services
affected

Offset

T31X - Permit version A TR-31 key blocks Name change HCR77C1
OA55184

CSNBT31X 014D

T31X - Permit version B TR-31 key blocks Name change HCR77C1
OA55184

CSNBT31X 014E

T31X - Permit version C TR-31 key blocks Name change HCR77C1
OA55184

CSNBT31X 014F

T31I - Permit version A TR-31 key blocks Name change HCR77C1
OA55184

CSNBT31I 0150

T31I - Permit version B TR-31 key blocks Name change HCR77C1
OA55184

CSNBT31I 0151

T31I - Permit version C TR-31 key blocks Name change HCR77C1
OA55184

CSNBT31I 0152

T31I - Permit override of default wrapping
method

Name change HCR77C1
OA55184

CSNBT31I 0153

T31X - Permit any CCA DES key if INCL-CV is
specified

Name change HCR77C1
OA55184

CSNBT31X 0158

T31I - Permit C0:G/C/V to DES MAC/
MACVER:CVVKEY-A

Name change HCR77C1
OA55184

CSNBT31I 015A

T31I - C0:G/C/V to DES MAC/MACVER:AMEX-
CSC

Name change HCR77C1
OA55184

CSNBT31I 015B

T31I - K0:E to DES EXPORTER/OKEYXLAT Name change HCR77C1
OA55184

CSNBT31I 015C

T31I - K0:D to DES IMPORTER/IKEYXLAT Name change HCR77C1
OA55184

CSNBT31I 015D

T31I - K0:B to DES EXPORTER/OKEYXLAT Name change HCR77C1
OA55184

CSNBT31I 015E

T31I - K0:B to DES IMPORTER/IKEYXLAT Name change HCR77C1
OA55184

CSNBT31I 015F

T31I - Permit K1/K4:E to DES EXPORTER/
OKEYXLAT

Name change HCR77C1
OA55184

CSNBT31I 0160

T31I - Permit K1/K4:D to DES IMPORTER/
IKEYXLAT

Name change HCR77C1
OA55184

CSNBT31I 0161

T31I - Permit K1/K4:B to DES EXPORTER/
OKEYXLAT

Name change HCR77C1
OA55184

CSNBT31I 0162

T31I - Permit K1/K4:B to DES IMPORTER/
IKEYXLAT

Name change HCR77C1
OA55184

CSNBT31I 0163

T31I - Permit M0/M1/M3:G/C/V to DES MAC/
MACVER:ANY-MAC

Name change HCR77C1
OA55184

CSNBT31I 0164

T31I - Permit P0:E to DES OPINENC Name change HCR77C1
OA55184

CSNBT31I 0165

Chapter 3. Migration 71

Table 9. Summary of new and changed CCA access controls (continued)

Access control Description FMID or APAR
number

Services
affected

Offset

T31I - Permit P0:D to DES IPINENC Name change HCR77C1
OA55184

CSNBT31I 0166

T31I - Permit V0:N/G/C to DES PINGEN:NO-
SPEC NOOFFSET

Name change HCR77C1
OA55184

CSNBT31I 0167

T31I - Permit V0:N/V to DES PINVER:NO-SPEC
NOOFFSET

Name change HCR77C1
OA55184

CSNBT31I 0168

T31I - Permit V1:N/G/C to DES PINGEN:IBM-
PIN/IBM-PINO NOOFFSET

Name change HCR77C1
OA55184

CSNBT31I 0169

T31I - Permit V1:N/V to DES PINVER:IBM-PIN/
IBM-PINO NOOFFSET

Name change HCR77C1
OA55184

CSNBT31I 016A

T31I - Permit V2:N/G/C to DES PINGEN:VISA-
PVV

Name change HCR77C1
OA55184

CSNBT31I 016B

T31I - Permit V2:N/V to DES PINVER:VISA-PVV Name change HCR77C1
OA55184

CSNBT31I 016C

T31I - Permit E0:N/X to DES
DKYGENKY:DKYL0+DMAC

Name change HCR77C1
OA55184

CSNBT31I 016D

T31I - Permit E0:N/X to DES
DKYGENKY:DKYL0+DMV

Name change HCR77C1
OA55184

CSNBT31I 016E

T31I - Permit E0:N/X to DES
DKYGENKY:DKYL1+DMAC

Name change HCR77C1
OA55184

CSNBT31I 016F

T31I - Permit E0:N/X to DES
DKYGENKY:DKYL1+DMV

Name change HCR77C1
OA55184

CSNBT31I 0170

T31I - Permit E1:N/E/D/B/X to DES
DKYGENKY:DKYL0+DMPIN

Name change HCR77C1
OA55184

CSNBT31I 0171

T31I - Permit E1:N/E/D/B/X to DES
DKYGENKY:DKYL0+DDATA

Name change HCR77C1
OA55184

CSNBT31I 0172

T31I - Permit E1:N/E/D/B/X to DES
DKYGENKY:DKYL1+DMPIN

Name change HCR77C1
OA55184

CSNBT31I 0173

T31I - Permit E1:N/E/D/B/X to DES
DKYGENKY:DKYL1+DDATA

Name change HCR77C1
OA55184

CSNBT31I 0174

T31I - Permit E2:N/X to DES
DKYGENKY:DKYL0+DMAC

Name change HCR77C1
OA55184

CSNBT31I 0175

T31I - Permit E2:N/X to DES
DKYGENKY:DKYL1+DMAC

Name change HCR77C1
OA55184

CSNBT31I 0176

T31I - Permit E3:N/E/D/B/G/X to DES
ENCIPHER

Name change HCR77C1
OA55184

CSNBT31I 0177

T31I - Permit E4:N/B/X to DES
DKYGENKY:DKYL0+DDATA

Name change HCR77C1
OA55184

CSNBT31I 0178

T31I - Permit E5:N/G/C/V/E/D/G/X to DES
DKYGENKY:DKYL0+DMAC

Name change HCR77C1
OA55184

CSNBT31I 0179

72 z/OS: z/OS ICSF System Programmer's Guide

Table 9. Summary of new and changed CCA access controls (continued)

Access control Description FMID or APAR
number

Services
affected

Offset

T31I - Permit E5:N/G/C/V/E/D/G/X to DES
DKYGENKY:DKYL0+DDATA

Name change HCR77C1
OA55184

CSNBT31I 017A

T31I - Permit E5:N/G/C/V/E/D/G/X to DES
DKYGENKY:DKYL0+DEXP

Name change HCR77C1
OA55184

CSNBT31I 017B

T31I - Permit V0/V1/V2:N to DES PINGEN/
PINVER

Name change HCR77C1
OA55184

CSNBT31I 017C

T31X - Permit DES KEYGENKY: DUKPT to
B0:N/X

Name change HCR77C1
OA55184

CSNBT31I 0180

T31X - Permit DES MAC/MACVER:AMEX-CSC to
C0:G/C/V

Name change HCR77C1
OA55184

CSNBT31I 0181

T31X - Permit DES MAC/MACVER: CVV-KEYA to
C0:G/C/V

Name change HCR77C1
OA55184

CSNBT31I 0182

T31X - Permit DES MAC/MACVER: ANY-MAC to
C0:G/C/V

Name change HCR77C1
OA55184

CSNBT31I 0183

T31X - Permit DES DATA/DATAM/DATAMV to
C0:G/C/V

Name change HCR77C1
OA55184

CSNBT31I 0184

T31X - Permit DES ENCIPHER/DECIPHER/
CIPHER to D0:E/D/B

Name change HCR77C1
OA55184

CSNBT31I 0185

T31X - Permit DES DATA to D0:E/D/B Name change HCR77C1
OA55184

CSNBT31I 0186

T31X - Permit DES EXPORTER/OKEYXLAT to
K0:E

Name change HCR77C1
OA55184

CSNBT31I 0187

T31X - Permit DES IMPORTER/IKEYXLAT to
K0:D

Name change HCR77C1
OA55184

CSNBT31I 0188

T31X - Permit DES EXPORTER/OKEYXLAT to K1/
K4:E

Name change HCR77C1
OA55184

CSNBT31I 0189

T31X - Permit DES IMPORTER/IKEYXLAT to K1/
K4:D

Name change HCR77C1
OA55184

CSNBT31I 018A

T31X - Permit DES MAC/DATA/DATAM to
M0:G/C

Name change HCR77C1
OA55184

CSNBT31I 018B

T31X - Permit DES MACVER/DATA/DATAMV to
M0:V

Name change HCR77C1
OA55184

CSNBT31I 018C

T31X - Permit DES MAC/DATA/DATAM to
M1:G/C

Name change HCR77C1
OA55184

CSNBT31I 018D

T31X - Permit DES MACVER/DATA/DATAMV to
M1:V

Name change HCR77C1
OA55184

CSNBT31I 018E

T31X - Permit DES MAC/DATA/DATAM to
M3:G/C

Name change HCR77C1
OA55184

CSNBT31I 018F

T31X - Permit DES MACVER/DATA/DATAMV to
M3:V

Name change HCR77C1
OA55184

CSNBT31I 0190

Chapter 3. Migration 73

Table 9. Summary of new and changed CCA access controls (continued)

Access control Description FMID or APAR
number

Services
affected

Offset

T31X - Permit DES OPINENC to P0:E Name change HCR77C1
OA55184

CSNBT31I 0191

T31X - Permit DES IPINENC to P0:D Name change HCR77C1
OA55184

CSNBT31I 0192

T31X - Permit DES PINVER: NO-SPEC to V0:N/V Name change HCR77C1
OA55184

CSNBT31I 0193

T31X - Permit DES PINGEN: NO-SPEC to V0:N/C Name change HCR77C1
OA55184

CSNBT31I 0194

T31X - Permit DES PINVER: NO-SPEC/IBM-PIN/
IBM-PINO to V1:N/V

Name change HCR77C1
OA55184

CSNBT31I 0195

T31X - Permit DES PINGEN: NO-SPEC/IBM-
PIN/IBM-PINO to V1:N/V

Name change HCR77C1
OA55184

CSNBT31I 0196

T31X - Permit DES PINVER: NO-SPEC/VISA-
PVV to V2:N/V

Name change HCR77C1
OA55184

CSNBT31I 0197

T31X - Permit DES PINGEN: NO-SPEC/VISA-
PVV to V2:N/C

Name change HCR77C1
OA55184

CSNBT31I 0198

T31X - Permit DES DKYGENKY: DKYL0+DMAC to
E0:N/X

Name change HCR77C1
OA55184

CSNBT31I 0199

T31X - Permit DES DKYGENKY: DKYL0+DMV to
E0:N/X

Name change HCR77C1
OA55184

CSNBT31I 019A

T31X - Permit DES DKYGENKY: DKYL0+DALL to
E0:N/X

Name change HCR77C1
OA55184

CSNBT31I 019B

T31X - Permit DES DKYGENKY: DKYL1+DMAC to
E0:N/X

Name change HCR77C1
OA55184

CSNBT31I 019C

T31X - Permit DES DKYGENKY: DKYL1+DMV to
E0:N/X

Name change HCR77C1
OA55184

CSNBT31I 019D

T31X - Permit DES DKYGENKY: DKYL1+DALL to
E0:N/X

Name change HCR77C1
OA55184

CSNBT31I 019E

T31X - Permit DES DKYGENKY: DKYL0+DDATA
to E1:N/X

Name change HCR77C1
OA55184

CSNBT31I 019F

T31X - Permit DES DKYGENKY: DKYL0+DMPIN
to E1:N/X

Name change HCR77C1
OA55184

CSNBT31I 01A0

T31X - Permit DES DKYGENKY: DKYL0+DALL to
E1:N/X

Name change HCR77C1
OA55184

CSNBT31I 01A1

T31X - Permit DES DKYGENKY: DKYL1+DDATA
to E1:N/X

Name change HCR77C1
OA55184

CSNBT31I 01A2

T31X - Permit DES DKYGENKY: DKYL1+DMPIN
to E1:N/X

Name change HCR77C1
OA55184

CSNBT31I 01A3

T31X - Permit DES DKYGENKY: DKYL1+DALL to
E1:N/X

Name change HCR77C1
OA55184

CSNBT31I 01A4

74 z/OS: z/OS ICSF System Programmer's Guide

Table 9. Summary of new and changed CCA access controls (continued)

Access control Description FMID or APAR
number

Services
affected

Offset

T31X - Permit DES DKYGENKY: DKYL0+DMAC to
E2:N/X

Name change HCR77C1
OA55184

CSNBT31I 01A5

T31X - Permit DES DKYGENKY: DKYL0+DALL to
E2:N/X

Name change HCR77C1
OA55184

CSNBT31I 01A6

T31X - Permit DES DKYGENKY: DKYL1+DMAC to
E2:N/X

Name change HCR77C1
OA55184

CSNBT31I 01A7

T31X - Permit DES DKYGENKY: DKYL1+DALL to
E2:N/X

Name change HCR77C1
OA55184

CSNBT31I 01A8

T31X - Permit DES DATA/DATAM/CIPHER/MAC/
ENCIPHER to E3:N/G/E/X

Name change HCR77C1
OA55184

CSNBT31I 01A9

T31X - Permit DES DKYGENKY: DKYL0+DDATA
to E4:N/X

Name change HCR77C1
OA55184

CSNBT31I 01AA

T31X - Permit DES DKYGENKY: DKYL0+DALL to
E4:N/X

Name change HCR77C1
OA55184

CSNBT31I 01AB

T31X - Permit DES DKYGENKY: DKYL0+DEXP to
E5:N/X

Name change HCR77C1
OA55184

CSNBT31I 01AC

T31X - Permit DES DKYGENKY: DKYL0+DMAC to
E5:N/X

Name change HCR77C1
OA55184

CSNBT31I 01AD

T31X - Permit DES DKYGENKY: DKYL0+DDATA
to E5:N/X

Name change HCR77C1
OA55184

CSNBT31I 01AE

T31X - Permit DES DKYGENKY:DKYL0+DALL to
E5:N/X

Name change HCR77C1
OA55184

CSNBT31I 01AF

T31X - Permit DES PINGEN to V0:N and DES
PINVER to V1/V2:N

Name change HCR77C1
OA55184

CSNBT31I 01B0

T31X - Permit AES CIPHER to D0:E/D/B New HCR77C1
OA55184

CSNBT31X 01D0

T31X - Permit AES MAC: CMAC to M6:G/C/V New HCR77C1
OA55184

CSNBT31X 01D1

T31X - Permit AES PINPROT to P0:E/D New HCR77C1
OA55184

CSNBT31X 01D2

T31X - Permit AES EXPORTER to K0:E New HCR77C1
OA55184

CSNBT31X 01D3

T31X - Permit AES EXPORTER to K1:E New HCR77C1
OA55184

CSNBT31X 01D4

T31X - Permit AES EXPORTER to K4:E New HCR77C1
OA55184

CSNBT31X 01D5

T31X - Permit AES IMPORTER to K0:D New HCR77C1
OA55184

CSNBT31X 01D6

T31X - Permit AES IMPORTER to K1:D New HCR77C1
OA55184

CSNBT31X 01D7

Chapter 3. Migration 75

Table 9. Summary of new and changed CCA access controls (continued)

Access control Description FMID or APAR
number

Services
affected

Offset

T31X - Permit AES IMPORTER to K4:D New HCR77C1
OA55184

CSNBT31X 01D8

T31X - Permit AES DKYGENKY:D-ALL/DMAC to
E0:X

New HCR77C1
OA55184

CSNBT31X 01D9

T31X - Permit AES DKYGENKY:D-ALL/DCIPHER
to E1:X

New HCR77C1
OA55184

CSNBT31X 01DA

T31X - Permit AES DKYGENKY:D-ALL/D-MAC to
E2:X

New HCR77C1
OA55184

CSNBT31X 01DB

T31X - Permit AES CIPHER to E3/E/
B,DKYGENKY:D-ALL/DCIP to E3:X

New HCR77C1
OA55184

CSNBT31X 01DC

T31X - Permit AES DKYGENKY:D-ALL/D-CIPHER
to E4:X

New HCR77C1
OA55184

CSNBT31X 01DD

T31X - Permit AES DKYGENKY:D-MAC to E5:X New HCR77C1
OA55184

CSNBT31X 01DE

T31I - Permit D0:E/D/B to AES
CIPHER:ENC/DEC/ENC+DEC

New HCR77C1
OA55184

CSNBT31I 01E0

T31I - Permit M6:G/C/V to AES MAC:CMAC
+GENONLY/GEN/VER

New HCR77C1
OA55184

CSNBT31I 01E1

T31I - Permit P0:E/D to AES PINPROT:ENC/DEC
+CBC+ISO-4

New HCR77C1
OA55184

CSNBT31I 01E2

T31I - Permit K0:E to AES EXPORTER New HCR77C1
OA55184

CSNBT31I 01E3

T31I - Permit K0:D to AES IMPORTER New HCR77C1
OA55184

CSNBT31I 01E4

T31I - Permit K1/K4:E to AES
EXPORTER:EXPTT31D+VARDRV-D

New HCR77C1
OA55184

CSNBT31I 01E5

T31I - Permit AES K1/K4:D to AES
IMPORTER:IMPTT31D+VARDRV-D

New HCR77C1
OA55184

CSNBT31I 01E6

T31I - Permit E0:X to AES
DKYGENKY:DKYL0/L1/L2+D-MAC+GEN+CMAC

New HCR77C1
OA55184

CSNBT31I 01E7

T31I - Permit E1:X to AES
DKYGENKY:DKYL0/L1/L2+D-SECMSG+SMPIN

New HCR77C1
OA55184

CSNBT31I 01E8

T31I - Permit E2:X to AES
DKYGENKY:DKYL0/L1/L2+D-MAC+GEN+CMAC

New HCR77C1
OA55184

CSNBT31I 01E9

T31I - Permit E3:X to AES DKYGENKY:D-
CIPHER+ENC+DEC+CBC

New HCR77C1
OA55184

CSNBT31I 01EA

T31I - Permit E3:E/B to AES
CIPHER:ENCRYPT/ENC+DEC

New HCR77C1
OA55184

CSNBT31I 01EB

T31I - Permit E4:X to AES
DKYGENKY:DKYL0/L1/L2+D-CIPHER+ENC+DEC

New HCR77C1
OA55184

CSNBT31I 01EC

76 z/OS: z/OS ICSF System Programmer's Guide

Table 9. Summary of new and changed CCA access controls (continued)

Access control Description FMID or APAR
number

Services
affected

Offset

T31I - Permit E5:X to AES
DKYGENKY:DKYL0/L1/L2/D-MAC+GEN+CMAC

New HCR77C1
OA55184

CSNBT31I 01ED

T31X - Permit version D TR-31 key blocks New HCR77C1
OA55184

CSNBT31X 0382

T31X - Permit AES KDKGENKY: KDKTYPEA to
11:X

New HCR77C1
OA55184

CSNBT31X 0383

T31X - Permit AES KDKGENKY: KDKTYPEB to
10:X

New HCR77C1
OA55184

CSNBT31X 0384

T31X - Permit DES DKYGENKY: DKYL0:DMPIN
to 12:X

New HCR77C1
OA55184

CSNBT31X 0385

T31I - Permit version D TR-31 key blocks New HCR77C1
OA55184

CSNBT31I 0386

Encrypted PIN Translate2 – Permit ISO-4 to
ISO-4 Translate

New HCR77C1
OA55184

CSNBPTR2 038A

Encrypted PIN Translate2 – Permit ISO-4
Reformat with PAN Change

New HCR77C1
OA55184

CSNBPTR2 038B

Encrypted PIN Translate2 – Permit ISO-4 to
ISO-4 Reformat

New HCR77C1
OA55184

CSNBPTR2 038C

Encrypted PIN Translate2 – Permit ISO-1 to
ISO-4 Reformat

New HCR77C1
OA55184

CSNBPTR2 038D

Encrypted PIN Translate2 – Permit ISO-4 to
ISO-1 Reformat

New HCR77C1
OA55184

CSNBPTR2 038E

Encrypted PIN Translate2 – Permit ISO-0 to
ISO-4 Reformat

New HCR77C1
OA55184

CSNBPTR2 038F

Encrypted PIN Translate2 – Permit ISO-4 to
ISO-0 Reformat

New HCR77C1
OA55184

CSNBPTR2 0390

Encrypted PIN Translate2 – REFORMAT New HCR77C1
OA55184

CSNBPTR2 0391

Encrypted PIN Translate2 – TRANSLATE New HCR77C1
OA55184

CSNBPTR2 0392

Encrypted PIN Translate2 – Permit ISO-1 to
ISO-4 RFMT1TO4

New HCR77C1
OA55184

CSNBPTR2 0393

Public Infrastructure Certificate New HCR77C1 CSNDPIC 0070

Public Infrastructure Certificate - PK10SNRQ New HCR77C1 CSNDPIC 007C

Allow weak wrapping of compliance-tagged
keys by DES MK

New HCR77C1 All callable
services that use
compliant tagged
DES key tokens.

02EB

Chapter 3. Migration 77

Table 9. Summary of new and changed CCA access controls (continued)

Access control Description FMID or APAR
number

Services
affected

Offset

Authenticated Key Export - SETSNKEY New HCR77C1 CSNBSYD
CSNBSYD1
CSNBSYE
CSNBSYE1
CSNBFLD
CSNBFLE
CSNBKRR2

02F5

Authenticated Key Export - DRVTXKEY New HCR77C1 CSNBSYD
CSNBSYD1
CSNBSYE
CSNBSYE1
CSNBFLD
CSNBFLE
CSNBKRR2

02F6

Authenticated Key Export - EXPTSK New HCR77C1 CSNBSYD
CSNBSYD1
CSNBSYE
CSNBSYE1
CSNBFLD
CSNBFLE
CSNBKRR2

02F7

Key Translate2 – COMP-TAG New HCR77C1 CSNBKTR2 02F8

Key Translate2 - COMP-CHK New HCR77C1 CSNBKTR2 02F9

Digital Signature Verify - PKCS-PSS allow not
exact salt length

New HCR77C0 CSNDDSV 033B

Digital Signature Generate - PKCS-PSS allow
small salt

New HCR77C0 CSNDDSG 033C

Key Test2 - AES, CMACZERO New OA49064 CSNBKTY2 0022

Key Test2 - DES, CMACZERO New OA49064 CSNBKTY2 0023

PKA Key Import - Disallow clear key import New OA49064 CSNDPKI 003A

Symmetric Algorithm Encipher - Galois/Counter
mode AES

New OA49064 CSNBSAE 01CD

Symmetric Algorithm Decipher - Galois/Counter
mode AES

New OA49064 CSNBSAD 01CE

Encrypted PIN Translate Enhanced New OA49064 CSNBPTRE 02D5

ECC Diffie-Hellman - Allow DRIV02 New OA49064 CSNDEDH 035F

Key Encryption Translate - CBC to ECB New OA49443 CSNBKET 030D

Key Encryption Translate - ECB to CBC New OA49443 CSNBKET 030E

PKA Decrypt - Disallow PKCS-1.2 New OA47781 CSNDPKD 0206

PKA Decrypt - Disallow ZEROPAD New OA47781 CSNDPKD 0207

78 z/OS: z/OS ICSF System Programmer's Guide

Table 9. Summary of new and changed CCA access controls (continued)

Access control Description FMID or APAR
number

Services
affected

Offset

PKA Decrypt - Disallow PKCSOAEP New OA47781 CSNDPKD 0208

PKA Encrypt - Disallow PKCS-1.2 New OA47781 CSNDPK3 0209

PKA Encrypt - Disallow ZEROPAD New OA47781 CSNDPK3 020A

PKA Encrypt - Disallow MRP New OA47781 CSNDPK3 020B

PKA Encrypt - Disallow PKCSOAEP New OA47781 CSNDPKE 020C

Diversified Key Generate2 - MK-OPTC New OA46466 CSNBDKG2 02D2

Diversified Key Generate2 - KDFFM-DK New OA46466 CSNBDKG2 02D3

Diversified Key Generate2 - Allow length option
for KDFFM-DK

New OA46466 CSNBDKG2 02D4

FPE Encrypt New HCR77B0 CSNBFPEE 02CF

FPE Decrypt New HCR77B0 CSNBFPED 02D0

FPE Translate New HCR77B0 CSNBFPET 02D1

DK Migrate PIN New OA44444 CSNBDMP 02CE

DK PRW Card Number Update New OA43906 CSNBPNU 02C3

DK PRW CMAC Generate New OA43906 CSNBDPCG 02C4

DK Deterministic PIN Generate New OA43906 CSNBDDPG 02C6

DK PAN Translate New OA43906 CSNBDPT 02C7

DK Regenerate PRW New OA43906 CSNBDRP 02C8

MAC Generate2 - AES CMAC New OA43906 CSNBMGN2 0336

MAC Verify2 - AES CMAC New OA43906 CSNBMVR2 0337

PKA Key Translate - From CCA RSA CRT to EMV
DDA format

New OA43816 CSNDPKT 0338

PKA Key Translate - From CCA RSA CRT to EMV
DDAE format

New OA43816 CSNDPKT 0339

PKA Key Translate - From CCA RSA CRT to EMV
CRT format

New OA43816 CSNDPKT 033A

Key Generate2 - DK PIN key set New OA42246 CSNBKGN2 02BB

Key Generate2 - DK PIN print key New OA42246 CSNBKGN2 02BC

Key Generate2 - DK PIN admin1 key set
PINPROT

New OA42246 CSNBKGN2 02BD

Key Generate2 - DK PIN admin1 key set MAC New OA42246 CSNBKGN2 02BE

Key Generate2 - DK PIN admin2 key set MAC New OA42246 CSNBKGN2 02BF

DK Random PIN Generate New OA42246 CSNBDRPG 02C0

DK PIN Verify New OA42246 CSNBDPV 02C1

DK PIN Change New OA42246 CSNBDPC 02C2

Chapter 3. Migration 79

Table 9. Summary of new and changed CCA access controls (continued)

Access control Description FMID or APAR
number

Services
affected

Offset

DK PAN Modify in Transaction New OA42246 CSNBDPMT 02C5

Diversified Key Generate2 - SESS-ENC New OA42246 CSNBDKG2 02CC

Diversified Key Generate2 - DALL New OA42246 CSNBDKG2 02CD

Identification of cryptographic features
Starting in ICSF FMID HCR77B0, the prefix used to identify Crypto Express2, Crypto Express3, and Crypto
Express4 adapters has changed. The following table lists the prefix for these adapters for FMIDs prior to
HCR77B0 and the prefix for these adapters for FMID HCR77B0 and later releases. This change applies to
ICSF messages, panels, and publications. The TKE workstation uses this same identification starting with
TKE release 8.0.

Table 10. Cryptographic adapter identification

Cryptographic adapter
Prefix for FMIDs prior to
HCR77B0

Prefix for FMID HCR77B0 and
later

Crypto Express2 coprocessor E 2C

Crypto Express2 accelerator F 2A

Crypto Express3 coprocessor G 3C

Crypto Express3 accelerator H 3A

Crypto Express4 CCA
coprocessor

SC 4C

Crypto Express4 EP11
coprocessor

SP 4P

Crypto Express4 accelerator SA 4A

Note: All newer cryptographic adapters use the convention where n is the number in the adapter name.
For regional cryptographic servers, n represents the generation number of the server:
nA

Crypto Expressn accelerators.
nC

Crypto Expressn CCA coprocessors.
nP

Crypto Expressn EP11 coprocessors.
nR

Regional cryptographic servers. Note: 2R requires ICSF FMID HCR77B1 with PTF OA49069 or later.

Ensure the expected P11 master key support is available
ICSF introduced support for the Enterprise PKCS #11 (EP11) coprocessor and its associated P11 master
key with FMID HCR77A0. ICSF uses the master key validation pattern (MKVP) in the header record of the
TKDS to determine which EP11 coprocessors to make active. In FMID HCR77A0, an EP11 coprocessor
was considered "active" if the MKVP in the current master key register matched the MKVP in the header
record of the TKDS. If the MKVP did not match, or if the TKDS was never initialized, the EP11 coprocessor
was considered "online", usable only for a limited number of non-secure key PKCS #11 services.

80 z/OS: z/OS ICSF System Programmer's Guide

Staring with FMID HCR77A1, the online status no longer exists. Coprocessors are either active or in some
error state. If the TKDS has been initialized, then any EP11 coprocessor that does not have a current
master key register MKVP that matches the TKDS is not made active and, thus, not usable. Note, however,
if the the TKDS has not been initialized, then all EP11 coprocessors will be made active even though they
would only be usable for non-secure key PKCS #11 services.

Key store policy

Key material archiving
ICSF implemented a way to archive records in the key data sets. The record remains in the data set, but
the key material in the record cannot be used. Any attempt to use the key material will fail unless the
optional key archive use control (a SAF XFACILIT resource) is enabled, which allows the request to
complete. An SMF record is logged in both cases. An optional joblog message is issued for the first
successful reference if the key archive message control (KEYARCHMSG) is enabled. For more information,
see z/OS Cryptographic Services ICSF Administrator's Guide.

To use this function, the key data sets must be in the common record format (KDSR), introduced in FMID
HCR77A1. Existing data sets can be converted to the KDSR format by using the Coordinated KDS
Administration callable service. For more information, see z/OS Cryptographic Services ICSF Application
Programmer's Guide.

Key material validity
ICSF implemented a way to specify a period when the key material of a key data set record is active. The
ICSF administrator can specify the start and end dates when the key material is active and ICSF allows
only the key material to be used by applications within those dates. For more information, see z/OS
Cryptographic Services ICSF Administrator's Guide.

To use this function, the key data sets must be in the common record format (KDSR), introduced in FMID
HCR77A1. Existing data sets can be converted to the KDSR format by using the Coordinated KDS
Administration callable service. For more information, see z/OS Cryptographic Services ICSF Application
Programmer's Guide.

KGUP
Two optional controls for KGUP control statement processing were introduced in ICSF FMID HCR77D0.
The controls are enabled by XFACILIT class profiles.

The verb authority control is used to restrict the use of KGUP control statement verbs. The control is
enabled by creating the CSF.KGUP.VERB.AUTHORITY.CHECK profile for the XFACILIT class.

The CSFKEYS authority control enables SAF checking of all labels referenced in KGUP control statements
against the profiles in the CSFKEYS class. The control is enabled by creating the
CSF.KGUP.CSFKEYS.AUTHORITY.CHECK profile in the XFACILIT class. In addition, the key store policy
granular key access control setting is enforced if enabled and the SAF profile prefixing is enforced if
enabled.

For additional details, see z/OS Cryptographic Services ICSF Administrator's Guide.

DES keys

Triple-length key support
Additional triple-length DES key support is introduced by APAR OA55184 for ICSF FMID HCR77C1 and
later releases and licensed internal code for the z13, z13s, z14, and later servers. In general, any service
where a double-length key can be used, a triple-length key can be used as well. The service description
should be checked for any restrictions.

Chapter 3. Migration 81

NOCV Key-encrypting keys
DES NOCV key-encrypting keys are used to export and import keys where the external token has no
control vector (a zero control vector is used). This allows communication with non-CCA crypto providers.

Starting with APAR OA55184 for ICSF FMID HCR77C1 and later releases and licensed internal code for
the z13, z13s, z14, and later servers, any IMPORTER or EXPORTER can be a NOCV KEK when the control
vector is the default control vector with these exceptions:

• The form bits may be any value other than single length key (000).
• The ENH-ONLY (bit 56) attribute may be enabled. For triple-length keys, the ENH-ONLY attribute is

enabled.

ICSF key data sets

Record metadata
ICSF implemented additional metadata for key data sets records. The metadata include key material
validity dates, last referenced, archive and recall dates, and IBM and installation metadata blocks. This
metadata can be used as search criteria for the Key Data Set List callable service. The metadata can be
read by using the Key Data Set Metadata Read service. Some of the metadata can be added, deleted, and
changed by using the Key Data Set Metadata Write service. For more information, see z/OS Cryptographic
Services ICSF Administrator's Guide.

To use this function, the key data sets must be in the common record format (KDSR), introduced in FMID
HCR77A1. Existing data sets can be converted to the KDSR format by using the Coordinated KDS
Administration callable service. For more information, see z/OS Cryptographic Services ICSF Application
Programmer's Guide.

CKDS
There are three formats of the CKDS:

• A fixed length record format with LRECL=252 (supported by all releases of ICSF). Sample is CSFCKDS.
• A variable length record format with LRECL=1024 (supported by HCR7780 and later releases). Sample

is CSFCKD2.
• The common record format (KDSR)which is common to all key data sets with LRECL=2048 (supported

by ICSF FMID HCR77A1 and later releases). Sample is CSFCKD3.

The variable length record format is only required if variable-length key tokens are to be stored in the
CKDS. All fixed-length and variable-length symmetric key tokens can be stored in the variable-length
record format CKDS. See “Migrating to the variable length CKDS” on page 83 for more information.

In addition to supporting all symmetric key tokens, the KDSR format CKDS provides support for metadata
for each record including tracking usage of the records. See “Migrating to the common record format
(KDSR) key data set” on page 83 for more information.

When new key types are added to the CKDS, these following consideration applies when sharing the
CKDS:

• When clear DES or AES keys are added to the CKDS, RACF-protect all clear DES and AES keys by label
name on all systems sharing the CKDS.

If you have no coprocessor, you can initialize the CKDS for use with clear AES and DES data keys. This
CKDS cannot be used on a system with cryptographic coprocessors.

Note: The CKDS exits (single-record, read-write and retrieval) are not enabled for either variable-length
record format of the CKDS. See Chapter 5, “Installation exits,” on page 157 for more information.

82 z/OS: z/OS ICSF System Programmer's Guide

Migrating to the variable length CKDS
If variable-length symmetric key tokens are to be stored in the CKDS, any existing CKDS must be
converted to a variable length record format.

To convert to the LRECL = 1024 format, ICSF provides the conversion utility program, CSFCNV2, that
converts a CKDS to the variable length format. See Chapter 7, “Converting a CKDS from fixed length to
variable length record format,” on page 215 for more information.

To convert to the KDSR format (ICSF FMID HCR77A1 or later), see “Migrating to the common record
format (KDSR) key data set” on page 83 for more information.

There is no reason to migrate a variable length record CKDS if your applications are not using AES or
HMAC keys in variable-length tokens. You can migrate to the variable length record at any time.

Note: All systems that will share a CKDS with the variable length record format must be running ICSF
FMID HCR7780 or later. Those with KDSR format must be running ICSF HCR77A1 or later.

To migrate to a variable length CKDS (LRECL=1024):

1. Install the HC7780 or later release of ICSF on all systems that will share the CKDS.
2. Allocate a new CKDS with the variable length record format. The new CKDS should be large enough to

hold all key in the current CKDS.
3. Disable dynamic CKDS updates on all systems.
4. Run the CKDS Conversion2 utility to convert the existing CKDS records to the new record format
5. Refresh the new CKDS on all systems that are sharing the CKDS
6. Enable dynamic CKDS updates on all systems

PKDS
There are two formats of the PKDS: original and KDSR. Both formats use the same LRECL. The KDSR
format provides support for metadata for each record including tracking usage of the record. To convert
the original format PKDS to common record (KDSR) format, see “Migrating to the common record format
(KDSR) key data set” on page 83.

The process of re-enciphering the PKDS is different for IBM zEnterprise 196 or newer servers.

TKDS
There are two formats of the TKDS: original and KDSR. Both formats use the same LRECL. The KDSR
format provides support for metadata for each record including tracking usage of the record. To convert
the original format TKDS to common record (KDSR) format, see “Migrating to the common record format
(KDSR) key data set” on page 83.

For secure PKCS #11 support (either Enterprise PKCS #11 or regional cryptographic services), the TKDS
must be initialized with the appropriate master key. This is the PKCS #11 master key (P11-MK) for
Enterprise PKCS #11 services or the regional cryptographic services master key (RCS-MK) for regional
cryptographic services. For P11-MK, support to INITIALIZE TKDS and UPDATE TKDS is available in the
Master Key Management Panels. For RCS-MK, TKDS initialization implicitly happens the first time a
regional cryptographic server is connected.

For information on managing and sharing the TKDS in a sysplex environment, see z/OS Cryptographic
Services ICSF Administrator's Guide.

Access authorization of the new callable services will be determined via SAF calls. No support will be
provided for invocation of an installation security exit for these new services. The CSFSERV class controls
access to the ICSF PKCS #11 callable services.

Migrating to the common record format (KDSR) key data set
All key data sets can be converted to KDSR format. Any system that will share the KDSR format key data
set must be running ICSF FMID HCR77A1 or later.

Chapter 3. Migration 83

The conversion is done with the active key data set, and a new key data set with the proper attributes for
the KDSR format must be allocated.

The conversion can be done by either calling the CSFCRC callable service or by using the ICSF panels.
While the conversion is happening, all updates to the key data set being converted are suspended. At the
end of the conversion, all systems in the sysplex sharing the key data set will be using the KDSR format
key data set as the active key data set. All new updates are made to the KDSR format key data set.

Converting to KDSR format using the CSFCRC callable service
A application must be written to invoke the CSFCRC callable service in order to convert a key data set to
KDSR format. See z/OS Cryptographic Services ICSF Application Programmer's Guide for details about the
CSFCRC callable service.

Converting to KDSR format using the ICSF panels
To convert a key data set to KDSR format using the ICSF panels, do the following:

1. On the ICSF Primary Menu panel, select option 2, KDS MANAGEMENT, and press ENTER.
2. When the ICSF Key Data Set Management panel appears, select the type of key data set you want to

convert to KDSR format and press ENTER.
3. On the next panel, select the COORDINATED xKDS CONVERSION option and press ENTER.
4. When the ICSF Coordinated KDS conversion panel appears, fill in the required fields and press ENTER.

Migrating to 24-byte DES master key
ICSF and TKE accept a 16-byte key value for the DES master key. CCA coprocessors with the September
2012 licensed internal code (LIC) or later installed on a CEX3C or later will support both a 16- and 24-
byte key value. ICSF and TKE will support loading both key value lengths.

To load a 24-byte DES master key, the DES master key – 24-byte key access control point must be
enabled in the ICSF role in all CCA coprocessors for the domain where you wish to use a 24-byte DES
master key. If the DES master key – 24-byte key access control point is not enabled consistently for all
coprocessors available to a instance of ICSF, the DES new master key register cannot be loaded. The
master key entry utility will fail. A TKE workstation is required to enable the access control point.

It is not possible to share a CKDS between systems with both 16- and 24-byte DES master keys. The
master key verification pattern algorithm for the 24-byte DES master key is different from the algorithm
for the 16-byte master key. The algorithms are described in the z/OS Cryptographic Services ICSF
Administrator's Guide.

The CKDS Reencipher and Symmetric Change Master Key utilities support both length key values. The
coordinated CKDS administration functions support both length key values. The Passphrase KDS
Initialization utility will load a 24-byte DES master key if the DES master key – 24-byte key access
control point is enabled.

Warning: Due to control block changes required to support the 24-byte DES master key, after a 24-byte
DES master key has been loaded, the LIC cannot be changed to an earlier version that does not support
the 24-byte DES master key. If a change to an earlier LIC is required, all DES master keys must be
changed back to 16-byte keys. This can be done using symmetric change master key.

Installation options data set
• AUDITKEYLIFECKDS – Controls auditing of key lifecycle events for CCA symmetric tokens.
• AUDITKEYLIFEPKDS – Controls auditing of key lifecycle events for CCA asymmetric tokens.
• AUDITKEYLIFETKDS – Controls auditing of key lifecycle events for PKCS #11 objects.
• AUDITKEYUSGCKDS – Controls auditing of key usage events for CCA symmetric tokens.
• AUDITKEYUSGPKDS – Controls auditing of key usage events for CCA asymmetric tokens.
• AUDITPKCS11USG – Controls auditing of usage events for PKCS #11 services.

84 z/OS: z/OS ICSF System Programmer's Guide

• CTRACE - Specifies the CTUCSFxx ICSF CTRACE configuration data set to use from PARMLIB. CTICSF00
is the default ICSF CTRACE configuration data set that is installed with ICSF FMID HCR77A1 and later
releases. CTICSF00 may be copied to create new PARMLIB members using the naming convention of
CTUCSFxx, where xx is a unique value specified by the user.

This parameter is optional. If the specified PARMLIB member is incorrect or absent, ICSF CTRACE will
attempt to use the default CTICSF00 PARMLIB member. If the CTICSF00 PARMLIB member is incorrect
or absent, ICSF CTRACE will perform tracing using an internal default set of trace options. By default,
ICSF CTRACE support will trace with the KdsIO, CardIO, and SysCall filters using a 2M buffer. For more
information refer to “Creating an ICSF CTRACE configuration data set” on page 25.

• HDRDATE - This option has been deprecated. If this option is specified, it is ignored and produces a
CSFO0212 message.

• KEYARCHMSG - Controls whether a joblog message is issued when an application successfully
references a key data set record that has been archived.

• MASTERKCVLEN - Control the number of hexadecimal digits displayed for the CCA master keys on the
ICSF Hardware Status panel.

• RNGCACHE - Controls whether ICSF maintains a cache of random numbers to be used by services that
require them.

• TRACEENTRY - This option has been deprecated. If this option is specified, it is ignored and produces a
CSFO0212 message. See the description of CTRACE for more information.

Function restrictions
Retained keys are RSA private keys that are stored in a cryptographic coprocessor instead of in the public
key storage data set. This change does not affect retained keys that you are currently using, that is, keys
that are stored on the cryptographic coprocessor. However, the ICSF services do no allow you to store in a
cryptographic coprocessor RSA keys intended for key management use. Your applications can continue to
store in the cryptographic coprocessor RSA private keys intended for signature usage. The modulus length
of these private keys is limited to 2048-bits.

The 2048-bit RSA keys may have an public exponent, e, in the range of 1<e<22048. and e must be odd.
The RSA public key exponents for 2049-bit to 4096-bit RSA keys are restricted to the values 3 and
65537. The public exponent may be 5, 17, or 257 on a z13, z13s, or later server with the October 2016 or
later licensed internal code.

CICS attachment facility
If you have the CICS Attachment Facility installed and you specify your own CICS wait list data set, you
need to modify the wait list data set to include the new callable services.

Modify and include:
For FMID HCR77D0:

CSFDCU2, CSFDRG2, CSFT34B, CSFT34C, CSFT34D, CSFT34R (APAR OA57089)
For FMID HCR77C1:

CSFPIC, CSFPTR2, CSFDDK (APAR OA55184)
For FMID HCR77B1:

CSFPTRE
For FMID HCR77B0:

CSFFLD, CSFFLE, CSFFPED, CSFFPEE, CSFFPET, CSFKDMW, CSFKDSL, CSFMPS.
For FMID HCR77A1:

CSFAPG, CSFPFO, CSFSXD.
For FMID HCR77A0:

CSFCTT2, CSFCTT3, CSFDCM, CSFDDPG, CSFDKG2, CSFDMP, CSFDPC, CSFDPCG, CSFDPMT,
CSFDPNU, CSFDPT, CSFDPV, CSFDRP, CSFDRPG, CSFDSK, CSFEAC, CSFESC, CSFEVF, CSFGIM,

Chapter 3. Migration 85

CSFKET, CSFMGN2, CSFMGN3, CSFMVR2, CSFMVR3, CSF1PD2, CSF1PE2, CSF1PS2, CSF1PV2,
CSFUDK.

Note: If no Wait List is specified, the default wait list will be used. See sample CSFWTL01 for the contents
of the default wait list.

Dynamic LPA load
ICSF uses dynamic LPA to load the pre-PC routines, CICS related routines, and other modules which must
reside in common storage into above-the-line ECSA. The dynamic LPA load will occur the first time that
ICSF is started within an IPL, and the modules will persist across subsequent restarts of ICSF.

Dynamic service update
Dynamic service update allows you to apply service updates with minimal impact to ICSF availability.
ICSF can activate service without a manual stop and start of ICSF. These updates include service updates
as well as changes to the options data set that cannot be applied via the SETICSF OPT,REFRESH
command. Additionally, dynamic service updates can be used to recycle ICSF when there are problems
that are not resolving.

Before starting a dynamic service update, see “Dynamic service update” on page 132.

Special secure mode
Use of some ICSF services requires that ICSF be in special secure mode: CSNBPGN, CSNBSKI,
CSNBSKI2, and CSNBSKM.

Resource Manager Interface (RMF)
Support to enable RMF to provide performance measurements on these selected ICSF services and
functions. The measurements refer to these services processing on cryptographic coprocessors except for
one-way hash. One-way hash is processed on CPACF.

• Decipher (CSNBDEC)
• Digital Signature Generate (CSNDDSG)
• Digital Signature Verify (CSNDDSV)
• Encipher (CSNBENC)
• Encrypted PIN Translate (CSNBPTR)
• Encrypted PIN Translate2 (CSNBPTR2)
• Encrypted PIN Translate Enhanced (CSNBPTRE)
• FPE Decipher (CSNBPFED)
• FPE Encipher (CSNBPFEE)
• FPE Translate (CSNBPFET)
• MAC Generate (CSNBMGN)
• MAC Generate2 (CSNBMGN2)
• MAC Verify (CSNBMVR)
• MAC Verify2 (CSNBMVR2)
• One-Way Hash (CSNBOWH)
• PIN Verify (CSNBPVR)
• Symmetric Algorithm Decipher (CSNBSAD)
• Symmetric Algorithm Encipher (CSNBSAE)

86 z/OS: z/OS ICSF System Programmer's Guide

System abend codes
A complete list of the reason codes for the ICSF abend (X'18F') is contained in z/OS MVS System Codes,
which is published on release boundaries. As a migration aid for FMID HCR77D0, which is not on a release
boundary, new and changed codes for FMID HCR77D0 are listed here. Reason codes introduced in the
previous web deliverables, FMIDs HCR77C1, HCR77C0, HCR77B1, and HCR77B0, are also listed.

An 18F code indicates an abend from ICSF.

FMID HCR77D0 reason codes are as follows:
Code Hex (Dec)

Meaning
48C (1164)

ASCRE failed during early ICSF processing. This abend results in a wait state (X'040').

FMID HCR77C1 reason codes are as follows:
Code Hex (Dec)

Meaning
488 (1160)

An error occurred during ATTACH of the CSFMISTT task.
489 (1161)

Unknown results from compliance warnings processing.

FMID HCR77C0 reason codes are as follows:
Code Hex (Dec)

Meaning
484 (1156)

An error occurred during ATTACH of the CSFMIKUT task.
487 (1159)

An error occurred during ATTACH of the CSFMIAKT task.

FMID HCR77B1 reason codes are as follows:
Code Hex (Dec)

Meaning
47C (1148)

The regional cryptographic server returned a response parameter that has a length error.
47D (1149)

Error attaching CSFMICST.
47E (1150)

Received OPIN larger than should be possible.
480 (1152)

The regional cryptographic server configuration subtask ended.
481 (1153)

The regional cryptographic server request subtask ended.
482 (1154)

A regional cryptographic server encountered a toxic request.
483 (1155)

The regional cryptographic server returned an unsupported OID.
485 (1157)

Cleanup error: A Crypto block has been double freed.
486 (1158)

Cleanup error: Caller release.

FMID HCR77B0 reason codes are as follows:

Chapter 3. Migration 87

Code Hex (Dec)
Meaning

477 (1143)
Crypto processor encountered a toxic request (APAR OA43012).

478 (1144)
Damaged variable metadata detected.

479 (1145)
An error occurred during ATTACH of the CSFKSMPT task.

47A (1146)
ISGQUERY returned unexpected results.

47B (1147)
KDS bound to multiple KDS tokens.

47F (1151)
Received CC1 from protected-key operation.

The following reason codes are no longer issued as of FMID HCR77B0:

• 2 (2)
• 5 (5)
• A (10)
• 2C (44)
• 50 (80)
• A2 (162)
• 187 (391)
• 40A (1034)
• 40B (1035)
• 40C (1036)
• 40D (1037)
• 416 (1046)
• 429 (1065)
• 42A (1066)
• 475 (1141)

SMF records
SMF record information for ICSF is documented in Appendix B, “ICSF SMF records,” on page 367. Refer
there for information on SMF records.

Subtypes 19, and 20 are written periodically to record processing times for requests being processed on a
cryptographic coprocessor or accelerator. Subtype 19 is written for the PCIXCC. Subtype 20 is written for
all supported processors.

TKE workstation
The Trusted Key Entry (TKE) workstation provided secure management of master and operational keys
and management of access control points. Refer to z/OS Cryptographic Services ICSF TKE Workstation
User's Guide for more information.

Access to callable services
Access to services that are executed on cryptographic coprocessors is through access control points in
the Domain Role. To execute callable services on the coprocessor, access control points must be enabled
for each service in the Role. For systems that do not use the optional TKE Workstation, all access control

88 z/OS: z/OS ICSF System Programmer's Guide

points (current and new) are enabled in the role with the appropriate microcode level on the
cryptographic coprocessor.

For TKE users who have modified the Domain Role, all new access control points must be enabled using
the TKE workstation. For non-TKE users, all new access control points are enabled.

Note: Some access control points are disable by default in the Coprocessor Role. See the ICSF
Application Programmer's Guide and z/OS Cryptographic Services ICSF Administrator's Guide for these
access control points. A TKE Workstation is required to enable these access control points

TKE enablement from the support element
You must enable TKE commands on each cryptographic coprocessor from the support element. This is
true for new TKE users and those upgrading their level of LIC. See Support Element Operations Guide and
z/OS Cryptographic Services ICSF TKE Workstation User's Guide for more information.

Enabling access control points for PKCS #11 coprocessor firmware
A new or a zeroized Enterprise PKCS #11 coprocessor (or domain) comes with an initial set of Access
Control Points (ACPs) that are enabled by default. All other ACPs, representing potential future support,
are left disabled. When a firmware upgrade is applied to an existing Enterprise PKCS #11 coprocessor ,
the upgrade may introduce new ACPs. The firmware upgrade does not retroactively enable these ACPs, so
they are disabled by default. These ACPs must be enabled via the TKE (or subsequent zeroize) in order to
utilize the new support they govern. See Table 28. PKCS #11 Access Control Points in Writing PKCS #11
Applications for a complete description of the Access Control Points.

Chapter 3. Migration 89

Table 11. Mapping of Enterprise PKCS #11 ACPs to firmware levels

Enterprise
PKCS #11
firmware
level ACPs supported at this level

ACPs that need to be
enabled when this code
level is obtained via
firmware upgrade

Initial
release

Control Point Management
Allow addition (activation) of Control Points(0)
Allow removal (deactivation) of Control Points(1)
Cryptographic Operations
Sign with private keys(2)
Sign with HMAC or CMAC(3)
Verify with HMAC or CMAC(4)
Encrypt with symmetric keys(5)
Decrypt with private keys(6)
Decrypt with private keys(7)
Key export with public keys(8)
Key export with symmetric keys(9)
Key import with private keys(10)
Key import with symmetric keys(11)
Generate asymmetric key pairs(12)
Generate symmetric keys(13)
Cryptographic Algorithms
RSA private-key use(30)
DSA private-key use(31)
EC private-key use(32)
Brainpool (E.U.) EC curves(33)
NIST/SECG EC curves(34)
Allow non-BSI algorithms (as of 2009) (21)
Allow non-FIPS-approved algorithms (as of 2011) (35)
Allow non-BSI algorithms (as of 2011) (36)
Key Size
Allow 80 to 111-bit algorithms(24)
Allow 112 to 127-bit algorithms(25)
Allow 128 to 191-bit algorithms(26)
Allow 192 to 255-bit algorithms(27)
Allow 256-bit algorithms(28)
Allow RSA public exponents below 0x10001(29)
Miscellaneous
Allow backend to save semi-retained keys not applicable(14)
Allow keywrap without attribute-binding(16)
Allow changes to key objects (usage flags only) (17)
Allow mixing external seed to RNG not applicable(18)
Allow non-administrators to mark key objects TRUSTED(37)
Do not double-check sign/decrypt operations(38)
Allow dual-function keys - key wrapping and data encryption(39)
Allow dual-function keys - digital signature and data encryption(40)
Allow dual-function keys - key wrapping and digital signature(41)
Allow non-administrators to mark public key objects ATTRBOUND(42)
Allow clear passphrases for password-based-encryption(43)
Allow wrapping of stronger keys by weaker keys(44)
Allow clear public keys as non-attribute bound wrapping keys(45)

None - all default ACPs
enabled in the initial
release.

Version 2
Sept. 2013
or later
licensed
internal
code (LIC)

Set for initial release plus

Cryptographic Operations
Allow key derivation (47)
Cryptographic Algorithms
DH Private Key Use (46)

Cryptographic
Operations
Allow key derivation
(47)
Cryptographic
Algorithms
DH Private Key Use
(46)

Migrating from the IBM eServer zSeries 900
This topic discusses migration from the IBM eServer zSeries 900.

90 z/OS: z/OS ICSF System Programmer's Guide

Migrating a CKDS and PKDS between a CCF system and a non-CCF system
The Cryptographic Coprocessor Feature (CCF) systems are the z900 and z800. The PCI Cryptographic
Coprocessor (PCICC) is an optional feature.

The following systems will be referred to as non-CCF systems in this section. A cryptographic feature is
required on the non-CCF systems.

• z9 EC and z9 BC with the optional Crypto Express2 Coprocessor (CEX2C).
• z10 EC and z10 BC with the optional Crypto Express2 Coprocessor (CEX2C) and Crypto Express3

Coprocessor (CEX3C).
• z114 and z196 with the optional Crypto Express3 Coprocessor (CEX3C).
• zBC12 and zEC12 with the optional Crypto Express3 Coprocessor (CEX3C) and Crypto Express4

Coprocessor (CEX4C).
• z13 and z13s with the optional Crypto Express5 Coprocessor (CEX5C).
• z14 and z14 ZR1 with the optional Crypto Express6 Coprocessor (CEX6C).

The processing of the RSA-MK on a non-CCF system depends on the cryptographic features on your
system. The PKA Callable Services control is not active on all systems.

CCF only system

SMK equal to KMMK
• Using Master Key Entry

1. Start ICSF on a non-CCF system, pointing to the initialized CKDS/PKDS.

You will see one or more of these messages depending on your system's cryptographic features:
CSFM124I MASTER KEY xxx ON CRYPTO EXPRESSn COPROCESSOR xxnn, SERIAL NUMBER
nnnnnnnn, NOT INITIALIZED.

2. Using Master Key Entry, load the value of the CCF DES master key into the new DES-MK register.
Load the value of the CCF SMK/KMMK master key into the new RSA-MK register. You will need the
checksums for each of these values.

3. If the non-CCF system has coprocessors (CEX3C or later) with the September, 2011 LIC or later, set
the DES and RSA master keys using the SET MK utility.

4. If the non-CCF system has coprocessors (CEX3C or earlier) without the September, 2011 LIC, do the
following steps.

– Set the DES master key using the SET MK utility.
– The ASYM-MK will have already been set when the last master key value was entered.
– Enable the Dynamic PKDS Access control and the PKA Callable Services control.

• Using Pass Phrase Initialization

1. Start ICSF on a non-CCF system, specifying the initialized CKDS and PKDS in the options data set.
2. Using PPINIT, type in the same pass phrase used to initialize CCF system, select the Reinitialize

system option and type in the CKDS and PKDS names.

SMK not equal to KMMK
Without a PCICC, the PKDS reencipher must run on any CCA Cryptographic coprocessor. If it is not, the
non-CCF system will not be able to use the tokens encrypted under the KMMK. This procedure requires
that you switch between your CCF and non-CCF TSO sessions.

• Using Master Key Entry

Chapter 3. Migration 91

If the non-CCF system has coprocessors (CEX3C or later) with the September, 2011 LIC or later, you
must reencipher to the KMMK. On older systems, it does not matter whether you reencipher to the
KMMK or the SMK.

This procedure reenciphers to the KMMK.

1. Start ICSF on a non-CCF system, pointing to the initialized CKDS and PKDS.
2. Define an empty PKDS.
3. Load the value of the CCF DES master key into the new DES-MK register. You will need the

checksum.
4. Set the DES master key using the SET MK utility.
5. Load the value of the CCF SMK master key into the new RSA-MK register. You will need the

checksum.

If the non-CCF system has coprocessors (CEX3C or later) with the September, 2011 LIC or later, do
the following steps:

– Set the RSA-MK using the SET MK utility
– Load the value of the CCF KMMK master key into the new RSA-MK register. You will need the

checksum.
– Reencipher the active PKDS to the empty PKDS.
– Change the RSA-MK using the CHANGE ASYM MK utility.

If the non-CCF system has coprocessors (CEX3C or earlier) without the September, 2011 LIC, do
the following steps:

– Load the value of the CCF KMMK master key into the new RSA-MK register. You will need the
checksum. The RSA-MK will be set automatically when the last key part is loaded.

– Reencipher the active PKDS to the empty PKDS.
– Refresh the new PKDS. Enable PKA Callable Services and Dynamic PKDS Access control.

6. Update options data set to point to the new PKDS.
7. On CCF system, disable PKA Callable Services.
8. Reset the SMK register.
9. Load the value of the CCF KMMK master key into the SMK register.

10. Activate the new PKDS.
11. Enable PKA Callable Services and Dynamic PKDS Access controls.
12. Update options data set to point to the new PKDS.

• Using Pass Phrase Initialization

1. On a CCF system, use PPKEYS utility to get the clear key values of the SMK and KMMK from a pass
phrase. You will need the checksum for each of these values.

2. On a non-CCF system, start ICSF pointing to initialized CKDS and PKDS.
3. Define an empty PKDS.

If the non-CCF system has coprocessors (CEX3C or later) with the September, 2011 LIC or later, do
the following steps:

a. Using PPINIT, type in the same pass phrase used to initialize CCF system, select the Reinitialize
system option and type in the CKDS and PKDS names.

b. Using Master Key Entry, load the value of the CCF KMMK master key into the new RSA-MK
register. You will need the checksum. Load a final key part of zeroes.

c. Reencipher the PKDS to the empty PKDS.
d. Change the RSA-MK using the CHANGE ASYM MK utility
e. Update the options data set to point to the new PKDS.

92 z/OS: z/OS ICSF System Programmer's Guide

f. On a CCF system, disable PKA Callable Services.
g. Using Master Key Entry, reset the SMK register.
h. Load the value of the KMMK into the SMK register. You can get the clear key value of the KMMK

using the PPKEYS utility. You will need the KMMK checksum.
i. Activate the new PKDS.
j. Enable PKA Callable Services/Dynamic PKDS Access.

k. Update the options data set to point to the new PKDS.

If the non-CCF system has coprocessors (CEX3C or earlier) without the September, 2011 LIC, do the
following steps:

a. Using Master Key Entry, load the value of the CCF KMMK master key into the new RSA-MK
register. You will need the checksum. Load a final key part of zeroes. The RSA-MK is
automatically set when the final key part is loaded.

b. Using PPINIT, type in the same pass phrase used to initialize CCF system, select the Reinitialize
system option and type in the CKDS and PKDS names.

c. Reencipher the PKDS to the empty PKDS.
d. Refresh the new PKDS.
e. Update the options data set to point to the new PKDS.
f. On a CCF system, disable PKA Callable Services.

g. Using Master Key Entry, reset the KMMK register.
h. Load the value of the SMK into the KMMK register. You can get the clear key value of the SMK

using the PPKEYS utility. You will need the SMK checksum.
i. Activate the new PKDS.
j. Enable PKA Callable Services/Dynamic PKDS Access.

k. Update the options data set to point to the new PKDS.

CCF with PCICCs

SMK equal to KMMK
• Using Master Key Entry

1. Start ICSF on a non-CCF system, pointing to the initialized CKDS/PKDS.

You will see one or more of these messages depending on your system's cryptographic features:
CSFM124I MASTER KEY xxx ON CRYPTO EXPRESSn COPROCESSOR xxnn, SERIAL NUMBER
nnnnnnnn, NOT INITIALIZED.

2. Using Master Key Entry, load the value of the CCF DES master key into the new DES-MK register.
Load the value of the CCF SMK/KMMK master key into the new RSA-MK register. You will need the
checksums for each of these values.

3. If the non-CCF system has coprocessors (CEX3C or later) with the September, 2011 LIC or later, set
the DES-MK and RSA-MK using the SET MK utility.

4. If the non-CCF system has coprocessors (CEX3C or earlier) without the September, 2011 LIC, do the
following steps:

– Set the DES-MK using the SET MK utility.
– The RSA-MK will have already been set when the last master key value was entered.

SMK not equal to KMMK
Make the SMK equal to KMMK prior to sharing the CKDS and PKDS on a non-CCF system.

• Using Master Key Entry

Chapter 3. Migration 93

1. Define an empty PKDS.
2. On the CCF system, disable the PKA Callable Services control.
3. Using Master Key Entry, reset ALL-PKA registers. Load the value of the CCF KMMK master key into

the SMK/KMMK/ASYM-MK registers on all CCF and PCICC coprocessors. You will need the
checksum. The ASYM-MK is automatically set when the final key part is loaded.

4. Reencipher the PKDS to the empty PKDS.
5. Activate the new PKDS.
6. Enable the PKA Callable Services and Dynamic PKDS Access controls.
7. Update the options data set to point to the new PKDS.
8. Start ICSF on the non-CCF system pointing to initialized CKDS and PKDS.
9. Load the value of the CCF DES master key into the new DES-MK register.

10. Set the DES-MK using the SET MK utility.

If the non-CCF system has coprocessors (CEX3C or later) with the September, 2011 LIC or later, do the
following steps:

– Load the value of the CCF KMMK master key into the new RSA-MK register. You will need the
checksum.

– Set the RSA-MK using the SET MK utility.

If the non-CCF system has coprocessors (CEX3C or earlier) without the September, 2011 LIC, do the
following steps:

– Load the value of the CCF KMMK master key into the new RSA-MK register. You will need the
checksum. The RSA-MK is automatically set when the final key part is loaded.

– Enable the PKA Callable Services and Dynamic PKDS Access controls. The current RSA-MK now has
the same value as the SMK/KMMK on the CCF.

• Using Pass Phrase Initialization

1. On the CCF system, use PPKEYS to get the clear key values of the SMK and KMMK from a pass
phrase. You will also need the checksum for each of these values.

2. Define an empty PKDS. Disable PKA Callable Services.
3. Using Master Key Entry, load the value of the CCF KMMK master key into the new ASYM-MK register

on the PCICC or PCICCs. You will need the checksum. Load a final key part of zeroes. The ASYM-MK
is automatically set when the final key part is loaded. The current ASYM-MK is now the same as the
KMMK value.

4. Load the value of the CCF SMK into the new ASYM-MK register on the PCICC or PCICCs. You will
need the checksum. Load a final key part of zeroes. The ASYM-MK is automatically set when the
final key part is loaded. The current ASYM-MK is now the same as the SMK value. The KMMK value
is now in the old ASYM-MK register.

5. Reset the KMMK register on the CCFs. Load the SMK value into the KMMK register. Now the KMMK =
SMK.

6. Reencipher the PKDS to the empty PKDS.
7. Activate the new PKDS.
8. Enable the PKA Callable Services and Dynamic PKDS Access controls.
9. Update options data set to point to the new PKDS.

10. Start ICSF on a non-CCF system, pointing to the initialized CKDS and PKDS (the one just
reenciphered previously).

11. Using PPINIT, type in the same pass phrase used to initialize CCF system, select the Reinitialize
system option and type in the CKDS and PKDS names.

94 z/OS: z/OS ICSF System Programmer's Guide

Callable services
These services were only available on the IBM eServer zSeries 900. These services are not supported on
newer servers.

• ANSI X9.17 EDC Generate (CSNAEGN)
• ANSI X9.17 Key Export (CSNAKEX)
• ANSI X9.17 Key Import (CSNAKIM)
• ANSI X9.17 Key Translate (CSNAKTR)
• ANSI X9.17 Transport Key Partial Notarize (CSNAKTR)
• Ciphertext Translate (CSNBCTT)
• PKSC Interface Service (CSFPKSC)
• Transform CDMF Key (CSNBTCK)
• User Derived Key (CSFUDK)

A migration check, ICSFMIG_DEPRECATED_SERV_WARNINGS, was provided to detect the use of these
services. You must migrate away from the use of these services, because support is removed. You should
investigate applications using these services, and determine the appropriate actions to remove or replace
them.

Functions not supported
This topic lists functions not supported without a CCF installed.

1. There is no KMMK (key management master key).
2. The Commercial Data Masking Facility (CDMF) is no longer supported. The CDMF keyword on KGUP

control statements and panels are no longer supported.
3. The Public Key Algorithm Digital Signature Standard is not supported. This affects callable services

CSNDPKG, CSNDPKI, CSNDDSG, and CSNDDSV.
4. The PBVC keyword is not supported. This affects callable services Clear PIN Generate Alternate

(CSNBCPA), PIN Translate (CSNBPTR) and PIN Verify (CSNBPVR).

Setup considerations
This topic lists setup changes that should be considered when migrating from a IBM eServer zSeries 900.

Consideration should be given to:

1. CICS wait list should be updated for services now executing on PCIXCCs/CEX2Cs. The sample CICS
wait list, CSFWTL01, supplied by IBM includes these services and can be used as a reference.

2. PKDS initialization is required.
3. Options data set keywords have changed. See “Parameters in the installation options data set” on

page 33.
4. If sharing a PKDS with a PCICC and PCIXCC/CEX2C, delete the PKDS records for labelnames of

retained keys on PCICCs no longer in use.
5. Customers who run CSFEUTIL to setup ICSF for automated electronic delivery process no longer need

to execute CSFEUTIL on a newer servers. SHA-1 is available without entering ICSF master keys.

Programming considerations
This topic lists setup changes that should be considered when migrating from a IBM eServer zSeries 900.

Consideration should be given to:

1. The DATAC key type cannot be used on the newer servers.

Chapter 3. Migration 95

2. The PIN block format checking on the new cryptographic coprocessors is more rigorous than with a
CCF.

For CSNBPVR, CSNBPTR and CSNBCPA services, the input PIN block must have the correct format as
specified in the PIN Profile parameter. On a CCF system, the PIN block format checking is incomplete.

For example, the REFORMAT processing mode of PIN Translate (CSNBPTR) may now fail when it was
previously successful on a CCF. On a CCF, if input to the PIN verify service (CSNBPVR) is a malformed
encrypted PIN block, the service will fail with return code 4, reason code 3028 (verification failed); on
newer servers, the service may fail with return code 8 and some appropriate reason code for invalid
PIN format.

3. 512 to 2048 bit modulus for RSA keys is supported in all PKA services except SET services (Set Block
Compose and Set Block Decompose).

4. All CCF functions are now executed on the coprocessors. This may cause some impact on the
performance of customer applications.

5. Reason codes from the new servers may be different from previous cryptographic hardware.
6. On new servers, the requirement that caller must be in supervisor state to use NOCV tokens is lifted

for the CKDS Key Record Write (CSNBKRW) service.
7. The z/OS SCHEDULE and IEAMSCHD macros are used to schedule SRBs. On the newer servers, since

there are no CCFs on the system, applications should delete FEATURE=CRYPTO on the SCHEDULE
and IEAMSCHD macros or the SRB being scheduled will not run.

8. External tokens that are export prohibited are imported differently on z990 and later servers with
PCIXCC or CCA Crypto Express coprocessors. The imported internal token will have the same control
vector as the external token with export prohibited. These tokens will only be usable on z990 and
later servers with a PCIXCC/CEX2C or on CCF systems with PCICCs. On previous hardware (CCF
systems) the imported internal token had a control vector that allowed export, and export prohibition
was enforced by the export flag in the token.

9. Prohibit Export service can now be used for MAC and MACVER keys.
10. A RACF check is added to the Key Generation Utility (CSFKGUP).
11. The CSFKGUP utility exit control block has been changed for AES. See Chapter 5, “Installation exits,”

on page 157 for the new format.

Migrating to PCI-HSM 2016 compliance mode
Beginning with the Crypto Express6 adapter, when configured as a CCA coprocessor, the CCA coprocessor
is capable of running in a compliance mode. In order for the requirements of PCI-HSM 2016 to apply to a
workload, the workload must be using compliant-tagged key tokens. Therefore, migrating an application
to PCI-HSM 2016 involves converting the key tokens that are used to compliant-tagged key tokens.

Compliance warnings
ICSF has support for generating warning events for operations that might need modifications to meet
requirements for the request to be compliant. The compliance warning event indicates whether the
request was compliant or not.

• When the request is compliant, the key tokens that are used can be converted to compliant-tagged key
tokens and the operation would still be successful.

• When the request is non-compliant, the key tokens, the service, or the service and rule combination
must be updated to be compliant before the key tokens used can be converted to be compliant-tagged.

Warning events are generated for successful requests where at least one of the key tokens that are used
is an internal, version 00 or version 01 DES key token and none of the key tokens is already compliant-
tagged. For services that do not accept compliant-tagged key tokens, only internal key tokens that are
used as input to the service are included in the event. For services that accept compliant-tagged key
tokens, all key tokens that are used are included in the event. Because no warning is generated for AES
and RSA key use when no DES key is involved, additional work is required to determine the compliance of

96 z/OS: z/OS ICSF System Programmer's Guide

those keys and operations. For information about how to approach those keys, see “Identifying key
tokens outside of compliance warning events” on page 97.

Warning events are in the form of SMF type 82 subtype 48 records. The generation of warning events is
controlled by the COMPLIANCEWARN keyword in the ICSF installation options data set.

Migration process
The migration process completes with existing key tokens that are converted to being compliant-tagged.
Before you complete the migration, it is important that the necessary steps are taken so that upon
completion of the migration, future key tokens can be created as compliant-tagged. For information about
creating compliant-tagged key tokens, see z/OS Cryptographic Services ICSF Application Programmer's
Guide.

The migration process requires a Crypto Express6 CCA Coprocessor or later with the July 2019 or later
licensed internal code (LIC).

Identifying key tokens outside of compliance warning events
Because compliance warnings are based on actual usage, be especially aware of operations (for example,
infrequent operations) which might not be started during the period where warnings are being collected.
These operations would not show up in a warning log and so must be discovered and analyzed
independently.

It might be necessary to do an analysis of the CKDS and PKDS to identify the key tokens to be converted.
If the key labels follow a naming convention, the Key Data Set List (CSFKDSL/CSFKDSL6) callable service
can be used to produce a list of labels according to a filter. ICSF provides sample REXX programs
(CSFCMPLC and CSFCMPLP) which list all tokens in the CKDS and PKDS respectively. It can be modified to
produce a list of labels based on a filter. The samples use the Key Data Set List callable service and the
listing can be modified by modifying the label_filter parameter.

You can also look at the profiles within the CSFKEYS SAF class that an application has access to as an
indication of the key tokens the application can use.

Key tokens that are identified in this way do not have any information about how they are used so either
the usage of such key tokens must be understood or all the key tokens that are used must be converted
together.

As noted before, no warning is generated for usages which do not include a DES key token. In these cases,
the key auditing (key lifecycle and key usage) support may help identify which keys the application is
using. See Chapter 2, “Installation, initialization, and customization,” on page 11 for more information
about key auditing.

If your CKDS contains DES KDF 01 tokens, the CKDS samples (CSFCMPLC, CSFCMPCC, and CSFCMPTC)
will help to identify and migrate them. DES KDF 01 tokens are tokens that were created as compliant-
tagged using a coprocessor without the July 2019 or later licensed internal code. They are no longer
considered compliant-tagged and should be migrated to become truly compliant-tagged. See z/OS
Cryptographic Services ICSF Application Programmer's Guide for more information on DES KDF 01 tokens.

Ensure the key tokens identified can become compliant-tagged
When the key tokens to be converted have been identified, you need to ensure that the process of
compliant-tagging the key tokens is successful. Compliant-tagged key tokens cannot be used with non-
compliant-tagged key tokens so you do not want the conversion of some tokens to fail while others
succeed. You do this by compliance-checking the key tokens first. Key tokens are compliance-checked by
using the Key Translate2 (CSNBKTR2/CSNEKTR2) or the PKA Key Translate (CSNDPKT/CSNFPKT) callable
service with the COMP-CHK keyword. To simplify this process, ICSF provides sample REXX programs
(CSFCMPCC and CSFCMPCP) that compliance-check a list of CKDS and PKDS labels respectively. Any key
token that cannot become compliant-tagged is identified in the output. For each such key, the cause of
the compliance-check failure must be resolved before you attempt to convert the key tokens.

Chapter 3. Migration 97

Converting key tokens to become compliant-tagged
When the key tokens to be converted have been identified, are not being used in a non-compliant way,
and verified to be compliant, they can be converted to compliant-tagged key tokens. At this point, you
must decide what backup strategy, if any, to pursue. Depending on the nature of the ICSF workloads, your
backup strategy can include, but is not limited to:

1. Making a backup copy of the CKDS.
2. Retrieving the key tokens to be converted from the CKDS and storing them in a data set.

In lieu of doing a backup copy of the CKDS, you can opt to instead write the compliant-tagged key tokens
to new CKDS labels.

Key tokens are converted to compliant-tagged tokens by using the Key Translate2 (CSNBKTR2/
CSNEKTR2) or the PKA Key Translate (CSNDPKT/CSNFPKT) callable service with the COMP-TAG keyword.
To simplify this process, ICSF provides sample REXX programs (CSFCMPTC and CSFCMPTP) that
compliance-tags a list of CKDS and PKDS labels respectively. The samples can be modified to write the
compliant-tagged key tokens to new labels instead of overwriting the original key tokens. To begin the
conversion, at least one CCA coprocessor must be placed in migration mode by using the TKE
workstation. To confirm the compliance mode of a CCA coprocessor, view the hardware status panel or
issue the DISPLAY ICSF,CARDS command. Also, take note of the number of CCA coprocessors in PCI-HSM
2016 mode without being in migration mode. A coprocessor in migration mode cannot handle requests
that contain compliant-tagged key tokens. Therefore, if workloads that use compliant-tagged key tokens
are already in use (for example, you previously converted some key tokens to compliant-tagged), you
must keep one or more coprocessors in PCI-HSM 2016 compliance mode, but not in migration mode.

At this point in the process, none of the key tokens should fail because they were previously compliance-
checked. However, if for some reason there is a failure such that some of the key tokens were converted
and others were not, the key tokens should be brought back to a consistent state as soon as possible. This
means that the key tokens should be updated such that they are all compliant-tagged or all non-
compliant-tagged. If a backup copy of the KDS was made, it can be used to make all the key tokens non-
compliant-tagged until the issue can be resolved. If the process involves creating compliant-tagged key
tokens under new key labels, the old labels can still be used until the issue is resolved.

98 z/OS: z/OS ICSF System Programmer's Guide

Chapter 4. Operating ICSF

You use certain commands to operate ICSF. Also, there are different conditions for operating ICSF that
you should consider. This topic describes the ICSF operating tasks.

Starting and stopping ICSF
To start ICSF, issue the operator START command. You must issue the START command after each IPL.
You can start ICSF only as a started task.

ICSF should be started as early in initialization as possible as one of first commands in COMMNDxx, rather
than later automation. ICSF should be started with SUB=MSTR to eliminate any need to wait for JES. This
also allows ICSF to be shut down after JES.

This example shows the format of the START command to start ICSF, assuming that CSF is the name of
the start procedure:

START CSF,SUB=MSTR

To reuse ASIDs, the REUSASID parameter can be added to the START comment:

START CSF,SUB=MSTR,REUSASID=YES

To stop ICSF, issue the operator STOP command. After you issue the STOP command, all ICSF processing
stops. If ICSF stops successfully, a message that states that ICSF is stopped appears on the console.

During shutdown, ideally ICSF is shut down after OMVS and JES are taken down. This allows any final
updates to encrypted file systems to be successfully processed. By shutting down ICSF gracefully, it
allows ICSF to complete all processing for updates to the key data sets.

This example shows the format of the STOP command to stop ICSF, assuming that CSF is the name of the
started procedure:

STOP CSF

If ICSF is unresponsive to the STOP command, be aware that you are not able to use the CANCEL
command to stop ICSF processing. Instead, use the force command:

FORCE csfproc,arm

Master key validation
When ICSF is started, the master keys are checked against the key data sets.

For CCA, master key verification patterns (MKVP) stored in the cryptographic key data set (CKDS) and the
public key data set (PKDS) are compared to the current master keys. A CCA coprocessor becomes active if
the current master keys match the MKVPs found in the CKDS and PKDS. If there is any mismatch, the
coprocessor does not become active. When an MKVP is not in the CKDS or PKDS, the master key is
ignored.

For an Enterprise PKCS #11 (EP11) coprocessor, ICSF uses the master key validation pattern (MKVP) in
the header record of the TKDS to determine which EP11 coprocessors to make active. An EP11
coprocessor is active if the MKVP in the current master key register matched the MKVP in the header
record of the TKDS or the TKDS has not been initialized.

When ICSF successfully starts, a message indicating that initialization is complete appears on the
console.

Note:

© Copyright IBM Corp. 2007, 2021 99

1. If a problem is detected with a cryptographic coprocessor or with an accelerator during initialization,
message CSFM540I is generated and the device is bypassed.

2. The ICSF_COPROCESSOR_STATE_NEGCHANGE health check monitors the state of the coprocessors
and accelerators daily to detect a negative change in state. For more information about this health
check, see z/OS Cryptographic Services ICSF Administrator's Guide.

3. The ICSF_MASTER_KEY_CONSISTENCY health check evaluates the master key states of the
coprocessors to detect potential master key problems. For more information about this health check,
see z/OS Cryptographic Services ICSF Administrator's Guide.

ARM policy
ICSF now has a z/OS® Automatic Restart Manager (ARM) policy that can be defined using the ARM
element “SYSICSF_*”. Whenever ARM is used to restart ICSF, message IXC812I is issued by ARM. When
ICSF is started at IPL-time on z/OS V2R3 or z/OS V2R4, a PTF for APAR OA59120 must be applied to
utilize ARM restarts. When restarting ICSF with ARM, ICSF is started as a started task and is included in
the output of the DISPLAY JOBS,LIST or DISPLAY A,LIST system commands. For information on setting up
ARM, see z/OS MVS Programming: Sysplex Services Guide.

Sample:

CSFARM1
//CSFARM1 JOB
//STEP1 EXEC PGM=IXCMIAPU,REGION=2M
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//SYSIN DD *

DATA TYPE(ARM)

DEFINE POLICY NAME(CSFPOL) REPLACE(YES)
RESTART_GROUP(ICSFGROUP)
TARGET_SYSTEM(*)
ELEMENT(SYSICSF_*)
RESTART_METHOD(BOTH,PERSIST)

//*ELEMENT NAME MUST BE SYSICSF_*
//*IN THIS SAMPLE ICSF WILL BE RESTARTED WITH THE
//*SAME JCL USED TO ORIGINALLY START IT.

Starting ICSF during IPL-time
In addition to starting ICSF manually, ICSF can be started automatically during IPL-time. Starting ICSF
during IPL-time allows callers of ICSF to take advantage of ICSF functionality during IPL-time. This
functionality is available on ICSF FMID HCR77C0 and later running on z/OS V2R3, with PTF for APAR
OA55378 applied, and later.

Both the ICSFPROC and ICSF system parameters must be specified in order to start ICSF automatically
during IPL-time. You can specify the values of the ICSFPROC and ICSF system parameters in one or more
of the following places:

• The IEASYSxx parmlib member.
• By the operator, in response to message IEA101A SPECIFY SYSTEM PARAMETERS.

If you define the values in only the IEASYSxx parmlib member, the system uses that definition. Otherwise,
the system determines the ICSFPROC and ICSF system parameters using the values specified via the
operator response to message IEA101A SPECIFY SYSTEM PARAMETERS.

To configure ICSF to start during IPL-time:

1. Configure the ICSFPROC system parameter. The ICSFPROC system parameter specifies the ICSF
startup procedure to be used during early ICSF initialization. ICSFPROC can be omitted or ‘NONE’ can
be specified to prevent ICSF from starting early. If ‘NONE’ is specified, ICSF must be started manually.
The procedure must reside in a SYS1.PROCLIB data set or an equivalent that is specified by the

100 z/OS: z/OS ICSF System Programmer's Guide

IEFPDSI DD card specification of the MSTJCLxx PARMLIB member. If the procedure is not in this
location, ICSF will not start. For information about MSTJCL, see z/OS MVS Initialization and Tuning
Reference.

ICSFPROC=CSF2

ICSFPROC=NONE

2. Configure the ICSF system parameter. The ICSF system parameter specifies the xx value of the
CSFPRMxx member containing the installation options data set. For example, a value of 00 would
correspond to the CSFPRM00 member. ICSF can be omitted or ‘NONE’ can be specified to prevent
ICSF from starting early. If ‘NONE’ is specified, ICSF must be started manually.

ICSF=00

ICSF=NONE

3. Modify the ICSF startup procedure. The ICSF startup procedure must be modified to accept the PRM
procedure variable. The PRM procedure variable must be set to the xx value of the CSFPRMxx member
containing the installation options data set. The following example shows how this would look using
the CSFPARM DD statement:

//CSF PROC PRM=00
//CSF EXEC PGM=CSFINIT,REGION=0M,TIME=1440,MEMLIMIT=NOLIMIT
//CSFPARM DD DSN=USER.PARMLIB(CSFPRM&PRM),DISP=SHR

4. IPL the system. If both the ICSFPROC and ICSF system parameters are configured correctly and the
ICSF startup procedure exists and is coded correctly, ICSF starts during IPL-time.

Notes:

• For information on the syntax of the ICSFPROC and ICSF system parameters, see IEASYSxx (system
parameter list) in z/OS MVS Initialization and Tuning Reference.

• For information on how to setup the ICSF startup procedure, see “Steps to create the ICSF startup
procedure” on page 27.

• It is recommended that you set up an AUTOR policy to auto reply to the BCF005A and BCF006A
messages after a specified amount of time has passed. In the example below, ICSF must be started
manually if the auto reply is NONE after 60 seconds.

MSGID(BCF005A) DELAY(60S) REPLY(NONE)

MSGID(BCF006A) DELAY(60S) REPLY(NONE)

• You should remove any existing invocations that start ICSF and rely on ICSF startup at IPL-time. For
example, look for any commands that start ICSF in the COMMNDxx parmlib member. After the system
brings up ICSF automatically, the system rejects any attempt to bring up a second instance of ICSF. The
system issues the following warning message and terminates the second instance of ICSF:

CSFM004A ICSF TERMINATING. ICSF ALREADY ACTIVE.

• ICSF, when started during IPL-time, is started as a system address space. Any processing (including
automation) that relies on ICSF being started as a job (started task) might need to make changes. For
example, ICSF would not be included in the output of the DISPLAY JOBS,LIST or DISPLAY A,LIST
system commands.

Note: ICSF address space is still included in the output of the DISPLAY JOBS,ALL and DISPLAY A,ALL
system commands.

Chapter 4. Operating ICSF 101

Modifying ICSF
When you issue the MODIFY command, ICSF gives control to the installation exit CSFEXIT5, if it exists.
Your installation can write an exit routine for CSFEXIT5 that changes ICSF operations. For example, you
might have the installation exit change the CHECKAUTH installation option without having to stop and
restart ICSF. See Chapter 5, “Installation exits,” on page 157 for a description of the installation exits.

If your installation does not write an exit routine for CSFEXIT5, no action occurs when you enter the
MODIFY command.

Command syntax notation
You must follow certain syntactical rules when you code the ICSF commands.

How to read syntax diagrams
This section describes how to read syntax diagrams. It defines syntax diagram symbols, items that may
be contained within the diagrams (keywords, variables, delimiters, operators, fragment references,
operands) and provides syntax examples that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments) that comprise a
command statement. They are read from left to right and from top to bottom, following the main path of
the horizontal line.

For users accessing IBM Documentation using a screen reader, syntax diagrams are provided in dotted
decimal format.

Symbols
The following symbols may be displayed in syntax diagrams:
Symbol

Definition
►►───

Indicates the beginning of the syntax diagram.
───►

Indicates that the syntax diagram is continued to the next line.
►───

Indicates that the syntax is continued from the previous line.
───►◄

Indicates the end of the syntax diagram.

Syntax items
Syntax diagrams contain many different items. Syntax items include:

• Keywords - a command name or any other literal information.
• Variables - variables are italicized, appear in lowercase, and represent the name of values you can

supply.
• Delimiters - delimiters indicate the start or end of keywords, variables, or operators. For example, a left

parenthesis is a delimiter.
• Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal (=), and other

mathematical operations that may need to be performed.
• Fragment references - a part of a syntax diagram, separated from the diagram to show greater detail.
• Separators - a separator separates keywords, variables or operators. For example, a comma (,) is a

separator.

102 z/OS: z/OS ICSF System Programmer's Guide

Note: If a syntax diagram shows a character that is not alphanumeric (for example, parentheses, periods,
commas, equal signs, a blank space), enter the character as part of the syntax.

Keywords, variables, and operators may be displayed as required, optional, or default. Fragments,
separators, and delimiters may be displayed as required or optional.
Item type

Definition
Required

Required items are displayed on the main path of the horizontal line.
Optional

Optional items are displayed below the main path of the horizontal line.
Default

Default items are displayed above the main path of the horizontal line.

Syntax examples
The following table provides syntax examples.

Table 12. Syntax examples

Item Syntax example

Required choice.

A required choice (two or more items)
appears in a vertical stack on the main
path of the horizontal line. You must
choose one of the items in the stack.

KEYWORD required_choice1

required_choice2

Required item.

Required items appear on the main
path of the horizontal line. You must
specify these items.

KEYWORD required_item

Optional item.

Optional items appear below the main
path of the horizontal line.

KEYWORD

optional_item

Optional choice.

An optional choice (two or more items)
appears in a vertical stack below the
main path of the horizontal line. You
may choose one of the items in the
stack.

KEYWORD

optional_choice1

optional_choice2

Default.

Default items appear above the main
path of the horizontal line. The
remaining items (required or optional)
appear on (required) or below
(optional) the main path of the
horizontal line. The following example
displays a default with optional items.

KEYWORD

default_choice1

optional_choice2

optional_choice3

Chapter 4. Operating ICSF 103

Table 12. Syntax examples (continued)

Item Syntax example

Variable.

Variables appear in lowercase italics.
They represent names or values.

KEYWORD variable

Repeatable item.

An arrow returning to the left above the
main path of the horizontal line
indicates an item that can be repeated.

A character within the arrow means
you must separate repeated items with
that character.

An arrow returning to the left above a
group of repeatable items indicates
that one of the items can be
selected,or a single item can be
repeated.

KEYWORD repeatable_item

KEYWORD

,

repeatable_item

Fragment.

The fragment symbol indicates that a
labelled group is described below the
main syntax diagram. Syntax is
occasionally broken into fragments if
the inclusion of the fragment would
overly complicate the main syntax
diagram.

KEYWORD fragment

fragment
,required_choice1

,required_choice2

,default_choice

,optional_choice

ICSF operator commands
Beginning with ICSF FMID HCR77B1 and later, ICSF provides support for the following operator
commands:
“Display ICSF” on page 104

Displays information about ICSF.
“SETICSF” on page 113

Used to perform specific administration functions.

Note: Installation options modified by the SETICSF command are in effect only until ICSF is stopped
or restarted. When ICSF is restarted, the installation options will be re-initialized from the ICSF
installation options data set. If you want to make the changes permanent, the installation options data
set must be manually updated as needed.

To see how to use RACF profiles to restrict the use of the ICSF operator commands, see 'Controlling the
use of operator commands' in z/OS Security Server RACF Security Administrator's Guide. The ICSF
operator commands are a subset of the MVS system operator commands. Therefore, the subsystem name
used in defining the RACF profiles is 'MVS' and the complete profiles names are 'MVS.DISPLAY.ICSF' and
'MVS.SETICSF.ICSF, as defined in 'MVS commands, RACF access authorities, and resource names' in z/OS
MVS System Commands.

Display ICSF
Use the Display ICSF command to:

104 z/OS: z/OS ICSF System Programmer's Guide

• Display the status for available cryptographic devices.
• Display certain ICSF options.
• Display cryptographic usage tracking options.
• Display key lifecycle auditing options.
• Display key usage auditing options.
• Display information about regional cryptographic servers (remote devices).
• Display information about the data set that is currently in use and what is set for a dynamic service

update.
• Display information pertaining to active key data sets (KDS).
• Display the status of the master key registers for the available cryptographic devices.
• Display the master key verification pattern information from the KDS and cryptographic devices.
• List the systems that are available to participate in commands with a SYSPLEX scope.

Syntax

Display ICSF

,LIST

,CARDS

,KDS

,MKS

,MKVPS

, ERRors

,OPTions

,REMOTEdevice | RD

,SERVICELIBS | SRVL

, SYSPLEX No

Yes

Parameters
CARDS

The system displays the following (message CSFM668I) information about the cryptographic devices
available on the system or sysplex:

• The active domain.
• For each available device:

– The device type (for example, CRYPTO EXPRESS5 COPROCESSOR).
– The device index (for example, 5C36).
– The device status (for example, Active).
– The device serial number (for example, 99EA6059; not applicable for accelerators).
– The firmware level of the device (for example, 6.0.5z).
– The total number of requests since ICSF initialization. This field supports up to 10 digits where

the maximum value is 232 - 1. If the number of requests exceeds the maximum, ICSF wraps the
count and displays a “+” in the high order digit to indicate wrapping (for example, +000000000).

– The number of requests both active and in the work queue for the device.
– The compliance mode of the CCA coprocessor, where applicable (for example, PCI-HSM 2016).

Chapter 4. Operating ICSF 105

For example:

D ICSF,CARDS
 CSFM668I 16.36.34 ICSF CARDS 259
 ACTIVE DOMAIN = 044
 CRYPTO EXPRESS5 COPROCESSOR 5C00
 STATUS=Active SERIAL#=DV4CK428 LEVEL=5.3.13z
 REQUESTS=0122008567 ACTIVE=0000
 CRYPTO EXPRESS5 ACCELERATOR 5A02
 STATUS=Active
 REQUESTS=0615576059 ACTIVE=0000
 CRYPTO EXPRESS5 COPROCESSOR 5P03
 STATUS=Active SERIAL#=DV4CB353 LEVEL=05.03 CLiC=040D
 REQUESTS=0000000070 ACTIVE=0000
 CRYPTO EXPRESS6 COPROCESSOR 6C05
 STATUS=Active SERIAL#=DV777392 LEVEL=6.0.5z
 REQUESTS=0158807665 ACTIVE=0000

If you are running on a lower release of ICSF, where the highest adapter supported by ICSF is the
CEX5S, the display shows the Crypto Express6 coprocessor as 5C05 and the firmware level is 6.0.5.

D ICSF,CARDS
 CSFM668I 16.42.34 ICSF CARDS 259
 ACTIVE DOMAIN = 044
 CRYPTO EXPRESS6 COPROCESSOR 5C05
 STATUS=Active SERIAL#=DV777392 LEVEL=6.0.5
 REQUESTS=0158807003 ACTIVE=0000

KDS
The system displays (message CSFM668I) information about the active key data sets (KDS) on the
system or sysplex:

• The dataset name for each active KDS (CKDS, PKDS, and TKDS).
• The format of the KDS (for example, KDSR):

– Possible values are KDSR, FIXED, and VARIABLE.
• The communication level in place for the KDS (for example, 3). This is only displayed is a sysplex

environment.
• Whether the KDS is being shared in a sysplex group (for example, Y).
• The MKVPs initialized in the KDS (for example, DES AES).

– The possible values are:

- DES, AES, or both for CKDS.
- RSA, ECC, or both for PKDS.
- P11, RCS, or both for TKDS.

For example:

SYSA D ICSF,KDS

SYSA CSFM668I 14.38.31 ICSF KDS 040
 CKDS RACFDRVR.SHERID.CKDSPLX
 FORMAT=KDSR COMM LVL=3 SYSPLEX=Y MKVPs=DES AES
 PKDS RACFDRVR.SHERID.PKDSPLX
 FORMAT=KDSR COMM LVL=3 SYSPLEX=Y MKVPs=RSA ECC
 TKDS RACFDRVR.SHERID.TKDSPLX
 FORMAT=KDSR COMM LVL=3 SYSPLEX=Y MKVPs=P11 RCS

MKS
The system displays (message CSFM668I) master key information:

• The name of the system (for example, SYSA).
• The active domain (for example, 003).
• For each device on the system:

– The device index (for example, 5C38).

106 z/OS: z/OS ICSF System Programmer's Guide

– The device serial number (for example, 99EA6059).
– The status of the device.
– A status indicator for each possible master key.

For more information on the possible display values, see the Displaying Coprocessor or Accelerator
Status topic in z/OS Cryptographic Services ICSF Administrator's Guide.

For example:

SYSA D ICSF,MKS

SYSA CSFM668I 09.45.18 ICSF MKS 852
 SYSNAME: SYSA DOMAIN: 003 CPC Name: PR2827A
 FEATURE SERIAL# STATUS AES DES ECC RSA P11
 5C38 99EA6059 Active A A A A
 5P39 97006054 Active A

MKVPS
The system displays the following (message CSFM668I) master key verification pattern information
from the KDS and cryptographic devices:

• The dataset name for each active KDS. If there is no active KDS for a particular type of KDS (for
example, CKDS), no data set name or device information is displayed for that KDS type.

• Up to six hexadecimal digits of the MKVP information from the header record of the KDS.
• The system name, coprocessor ID, and up to six hexadecimal digits of the current MKVP for each

cryptographic device associated with the KDS.

– A 'KDS/adapter mismatch’ indicator ('*') is displayed if the MKVP of the KDS does not match the
MKVP of the cryptographic device or the MKVP of the cryptographic device was ‘Empty’.

– ‘NotSet’ is displayed when the KDS in not initialized with the MKVP.
– ‘Ignored’ is displayed for an MKVP in a cryptographic device if the MKVP in the KDS was not

initialized. The MKVP in the cryptographic device is not checked. This is not considered an error
when processing the ERRORS option. If the D ICSF,MKVPS,ERR command does not list any errors,
issue the D ICSF,MKVPS command to confirm that the KDS MKVPS are set.

– ‘Empty’ is displayed when the MKVP in the cryptographic device is empty.
– ‘N/A’ is displayed for the ECC MKVP value in the cryptographic device when the cryptographic

device is a CEX3C and the ECC value is not set in the cryptographic device.
• The number of hexadecimal digits of the MKVP information displayed is truncated to the valued
specified on the ICSF options parameter MASTERKCVLEN when that parameter value is less than
six. The MASTERKCVLEN value used is the value set on the system issuing the command.

The Display ICSF,MKVPS command collects and displays information from systems at ICSF FMID
HCR77B1 and later. Information for regional cryptographic servers is not displayed.

Although unlikely, the output from the D ICSF,MKVPS command could show a KDS and coprocessor
MKVP value that is the same, but flagged as a mismatch. If this happens:

• Set MASTERKCVLEN to ALL to make sure the command is displaying the maximum of six
hexadecimal digits of the MKVP value.

• If the MKVPs of the coprocessor and KDS still appear to match, use the ICSF Coprocessor Hardware
Status panel (CSFCMP40) to see all the hexadecimal digits of MKVP in the coprocessor. Next, create
a flat file of the KDS using IDCAMS to see the complete MKVP in the KDS header record. Compare
the two values. To see the format of the KDS header records, see Appendix A, “ Diagnosis reference
information,” on page 235.

ERRors
The display is limited to cryptographic devices whose current MKVP is set or empty and does not
match the set MKVP in the KDS. If no KDS MKVPS are set, no errors are flagged. See the
explanation of ‘ignored’ above. Use the D ICSF,MKVPS command to ensure that the KDS MKVPS
are set.

Chapter 4. Operating ICSF 107

Example showing that mismatches are found:

D ICSF,MKVPS,SYSPLEX=Y

SYS1 D ICSF,MKVPS,SYSPLEX=Y
SYS1 CSFM668I 15.01.17 ICSF MKVPS

 CKDS ICSFTSTV.VARREC1.CKDS
 ID AES DES
 KDSMKVPS 2058C8 CA6B40
 S0C 3C04 2058C8 CA6B40
 S0C 3C05 2058C8 CA6B40
 S0C 3C08 2058C8 CA6B40
 S0C 3C09 *Empty *Empty
 -
 S0D 3C07 2058C8 CA6B40
 S0D 3C08 2058C8 CA6B40
CKDS ICSFTSTV.VARREC1.KDSR.CKDS
 ID AES DES
 KDSMKVPS 2058C8 CA6B40
 S20 5C00 2058C8 CA6B40
 S20 5C01 2058C8 CA6B40
 S20 6C05 2058C8 CA6B40
 -
 S22 5C00 2058C8 CA6B40
 S22 5C01 2058C8 CA6B40
PKDS ICSFTSTV.KDSR1.PKDS
 ID ECC RSA
 KDSMKVPS 78D81A E83F15
 S20 5C00 78D81A E83F15
 S20 5C01 78D81A E83F15
 S20 6C05 78D81A E83F15
 -
 S22 5C00 78D81A E83F15
 S22 5C01 78D81A E83F15
 S22 5C05 78D81A E83F15
TKDS ICSFTSTV.GLGSML.EP11.TKDS
 ID P11
 KDSMKVPS 5B083D
 S0C 4P13 *Empty
 S0C 4P15 5B083D
*KDS/adapter MKVP mismatch

Example showing that no errors are found:

SY1 d icsf,mkvps
SY1 CSFM668I 15.40.14 ICSF MKVPS
CKDS ICSFTSTV.VARREC1.CKDS
 ID AES DES
 KDSMKVPS 2058C8 CA6B40
 S0C 3C04 2058C8 CA6B40

PKDS ICSFTSTV.KDSR1.PKDS
 ID ECC RSA
 KDSMKVPS 78D81A E83F15
 S20 5C00 78D81A E83F15

TKDS ICSFTSTV.GLGSML.EP11.TKDS
 ID P11
 KDSMKVPS 5B083D
 S0C 4P15 5B083D

Example showing that the Errors keyword is specified and no errors are found:

SY1 d icsf,mkvps,err
SY1 CSFM668I 15.41.14 ICSF MKVPS
 No KDS/adapter MKVP mismatches found or KDS MKVPs not set

Example showing that either no KDS is defined or no cryptographic adapters are online:

SY1 d icsf,mkvps
 CSFM668I 08.49.49 ICSF MKVPS
 No KDS defined or no cryptographic adapters online

108 z/OS: z/OS ICSF System Programmer's Guide

Example showing that when an MKVP is not set in the KDS, the cryptographic device MKVP value is
‘Ignored’. If the MKVP value is set in the KDS, the cryptographic device MKVP is ‘Empty’:

SY1 d icsf,mkvps
SY1 CSFM668I 16.38.00 ICSF MKVPS
 CKDS ISFTEST.CLC.CKDSVAR
 ID AES DES
 KDSMKVPS 2058C8 NotSet
 SY1 5C38 2058C8 Ignored
 PKDS ISFTEST.CLC.PKDSNEW
 ID ECC RSA
 KDSMKVPS 78D81A E83F15
 SY1 5C39 78D81A *Empty
 *KDS/adapter MKVP mismatch
 No TKDS defined or no EP11 adapters online

Example showing how the use of the Errors keyword alters the output from the Display ICSF,MKVPS
command so that only the line flagged with ‘*’ is displayed:

SY1 d icsf,mkvps,err
SY1 CSFM668I 16.41.34 ICSF MKVPS
 PKDS ISFTEST.CLC.PKDSNEW
 ID ECC RSA
 MKVP 78D81A E83F15
 SY1 5C39 78D81A *Empty
 *KDS/adapter MKVP mismatch

Example showing CEX3C with ECC and MKVP is not set in the cryptographic device:

SY1 d icsf,mkvps
PKDS ENG.BOTHMK.PKDS
 ID ECC RSA
 MKVP 78D81A E83F15
 SY1 3C03 N/A E83F15

For information to help resolve KDS/adapter mismatch problems, see ‘Managing CCA Master Keys’
and ‘Managing PKCS #11 master keys’ in z/OS Cryptographic Services ICSF Administrator's Guide.

LIST
The system displays (message CSFM668I) members of a sysplex who are eligible to participate in
Display ICSF and SETICSF commands. LIST is the default option.

For example:

SY1 D ICSF,LIST

SY1 CSFM668I 08.08.57 ICSF LIST 742
 Systems supporting SETICSF and DISPLAY ICSF commands:
 SYSNAME RELEASE DOM CHG_DATE
 SY1 HCR77D0 000 06/18/19

OPTions
The system displays (message CSFM668I information):

• The name of the system (for example, SYSA).
• The ICSF release that is active (for example, HCR77B1).
• The most recent build date of ICSF executable code (for example, 01/09/16 or the latest ICSF code

change).
• How much time must elapse between key references before a refdate change is recorded in the KDS

record (refdate update interval).
• How often KDS refdate updates are hardened to the KDS dataset (refdate update period).
• The number of master key verification pattern digits.
• The cryptographic usage statistics that are being tracked.
• The COMPLIANCEWARN and AUDIT information.

For example:

Chapter 4. Operating ICSF 109

SYSA D ICSF,OPTIONS
SYSA CSFM668I 10.23.21 ICSF OPTIONS 833
 SYSNAME = SYSA ICSF LEVEL = HCR77C1
 LATEST ICSF CODE CHANGE = 08/22/17
 Refdate update interval in Days/HH.MM.SS = 030/00.00.00
 Refdate update period in Days/HH.MM.SS = 000/01.00.00
 MASTERKCVLEN = display 3 digits
 AUDITKEYLIFECKDS: Audit CCA symmetric key lifecycle events
 SYSNAME LABEL TOKEN
 SYSA Yes Yes
 AUDITKEYLIFEPKDS: Audit CCA asymmetric key lifecycle events
 SYSNAME LABEL TOKEN
 SYSA Yes Yes
 AUDITKEYLIFETKDS: Audit PKCS #11 key lifecycle events
 SYSNAME TOKOBJ SESSOBJ
 SYSA Yes Yes
 AUDITKEYUSGCKDS: Audit CCA symmetric key usage events
 SYSNAME LABEL TOKEN Interval Days/HH.MM.SS
 SYSA Yes Yes 000/01.00.00
 AUDITKEYUSGPKDS: Audit CCA asymmetric key usage events
 SYSNAME LABEL TOKEN Interval Days/HH.MM.SS
 SYSA Yes Yes 000/01.00.00
 AUDITPKCS11USG: Audit PKCS #11 usage events
 SYSNAME TOKOBJ SESSOBJ NOKEY Interval Days/HH.MM.SS
 SYSA Yes Yes Yes 000/01.00.00
 STATS:
 SYSA ENG, SRV, ALG
 COMPLIANCEWARN: Compliance warning events
 SYSA PCI-HSM 2016 Yes

REMOTEdevice|RD
Displays information about regional cryptographic servers (remote devices) on either the local system
or if SYSPLEX=YES, all systems in the sysplex.

Notes:

• At least one REMOTEDEVICE option must have been specified in the ICSF installation options data
set prior to ICSF being started in order for the Display ICSF,REMOTEDEVICE command to be
operational.

• In addition, the current machine type must be an IBM zEnterprise EC12 or later machine.
• If ICSF is started without any REMOTEDEVICE entries specified in the ICSF installation options data

set or while running on a machine type other than an IBM zEnterprise EC12 or later machine, the
Display ICSF,REMOTEdevice command fails, and ICSF issues message CSFM669I.

The results of the command are displayed through message CSFM668I:

• The dataset name for the active TKDS (for example, CSF.TKDS2).
• The first three hexadecimal bytes of the regional cryptographic server master key verification

pattern from the TKDS (for example, AB1122).
• For each device on the system:

– The device serial number (for example, 87651130).
– The device port number (for example, 8001).
– The level indicating the generation of card code (for example, LEVEL=01.00).
– The HOST/IP of the device (for example, HOST/IP@=123.45.34.100).
– The remote device identifier (REGIONAL CRYPTO SRV); for example, 1R09, where:

- 1 = Generation of the device.
- R = Remote regional cryptographic server.
- 09 = Index as defined in the options dataset.

– The status of the device (for example, Active).
– The current number of socket connections / the maximum number of socket connections as

defined in the options dataset (for example, 7/8).

110 z/OS: z/OS ICSF System Programmer's Guide

Note: If the current number of sockets = the maximum number of sockets defined, only one
number is displayed (as with the second example showing Sockets=8).

– The current number of active cryptographic requests on the device (In this example, 5 for the first
remote device (serial number 87651130) and 6 for the second remote device (serial number
87661276).

– The total number of cryptographic requests on the device since ICSF initialization. This field
supports up to 10 digits where the maximum value is 232 - 1. If the number of requests exceeds
the maximum, ICSF wraps the count and displays a “+” in the high order digit to indicate
wrapping (for example, +000000000).

– Optional new master key information: The first three hexadecimal bytes of the regional
cryptographic server new master key verification pattern and the state of the new master key (for
example, FULL COMMITTED).

Note: During heavy workloads or when SYSPLEX=YES is specified, the display command may be
unable to retrieve a recently updated new master key value. If the new master key verification
pattern that is displayed does not match the new master key loaded from the RCS utility, wait 10
minutes for an implicit RCS check and then reissue the display command. Otherwise, issue the
SETICSF RESTART command for each RCS device.

– Optional diagnostic information: Displays the device MKVP when the regional cryptographic
server master key does not match that in the TKDS.

For example, when SYSPLEX=NO is specified or used by default from SYSA with 2 remote devices:

SYSA D ICSF,RD

SYSA CSFM668I 04.47.06 ICSF RD 424
 TKDS = CSF.TKDS2
 RCS MKVP FROM TKDS = AB1122 ...
 SERIAL NUMBER=87651130 PORT=8001 LEVEL=01.00
 HOST/IP@=123.45.34.100
 REGIONAL CRYPTO SRV 1R06
 SYSA Active Sockets=7/8
 REQUESTS ACTIVE=0005
 SERIAL NUMBER=87661276 PORT=8001 LEVEL=01.00
 HOST/IP@=123.45.34.101
 REGIONAL CRYPTO SRV 1R09
 SYSA Active Sockets=8
 REQUESTS ACTIVE=0006

When SYSPLEX=YES is specified, ICSF collects the remote device information from all the systems in
the sysplex for display through message CSFM668I. The output of message CSFM668I is sorted and
grouped using the sort keys:

• TKDS
• SERIAL NUMBER
• PORT

For example, when SYSPLEX=YES is specified:

SYSA D ICSF,RD,SYSPLEX=Y

SYSA CSFM668I 05.54.31 ICSF RD 502
 TKDS = CSF.TKDS2
 RCS MKVP FROM TKDS = AB1122 ...
 SERIAL NUMBER=87651130 PORT=8001 LEVEL=01.00
 HOST/IP@=123.45.34.100
 REGIONAL CRYPTO SRV 1R06
 SYSA Active Sockets=8
 REQUESTS ACTIVE=0000
 SERIAL NUMBER=87651130 PORT=8002 LEVEL=01.00
 HOST/IP@=123.45.34.100
 REGIONAL CRYPTO SRV 1R06
 SYSB Active Sockets=8
 REQUESTS ACTIVE=0000
 SERIAL NUMBER=87651130 PORT=8003 LEVEL=01.00
 HOST/IP@=123.45.34.100
 REGIONAL CRYPTO SRV 1R06
 SYSC Active Sockets=8

Chapter 4. Operating ICSF 111

 REQUESTS ACTIVE=0000
 SERIAL NUMBER=87661062 PORT=8003 LEVEL=01.00
 HOST/IP@=123.45.34.103
 REGIONAL CRYPTO SRV 1R16
 SYSC Active Sockets=8
 REQUESTS ACTIVE=0000
 SERIAL NUMBER=87661276 PORT=8001 LEVEL=01.00
 HOST/IP@=123.45.34.101
 REGIONAL CRYPTO SRV 1R09
 SYSA Active Sockets=8
 REQUESTS ACTIVE=0000
 SERIAL NUMBER=87661276 PORT=8002 LEVEL=01.00
 HOST/IP@=123.45.34.101
 REGIONAL CRYPTO SRV 1R09
 SYSB Active Sockets=8
 REQUESTS ACTIVE=0000
 SERIAL NUMBER=87661276 PORT=8003 LEVEL=01.00
 HOST/IP@=123.45.34.101
 REGIONAL CRYPTO SRV 1R09
 SYSC Active Sockets=8
 REQUESTS ACTIVE=0000
 SERIAL NUMBER=87671176 PORT=8003 LEVEL=01.00
 HOST/IP@=123.45.34.102
 REGIONAL CRYPTO SRV 1R13
 SYSC Active Sockets=8
 REQUESTS ACTIVE=0000

SERVICELIBS | SRVL
The SERVICELIBS keyword displays the following information (message CSFM668I) about the data
sets being used for active ICSF and what would be used in the event of a dynamic service update or
after a restart of ICSF.
SCSFMOD0

The information listed shows the data set locations for SCSFMOD0. The data set listed under
CURRENT is what the active instance of ICSF is using. The data set listed under NEXT is what is
specified for the option SERVSCFMOD0 in the options dataset. NEXT will always be LNKLST unless
SERVICELIBS(YES) has been specified.

SIEALNKE
The information listed shows the data set locations for SIEALNKE. The data set listed under
CURRENT is what the active instance of ICSF is using. The data set listed under NEXT is what is
specified for the option SERVSIEALNKE in the options dataset. NEXT will always be LNKLST unless
SERVICELIBS(YES) has been specified.

CURRENT
Refers to the current code running for the instance of ICSF. It is either LNKLST or a data set that
was loaded via a service option.

NEXT
Refers to the data set that would be used after the next SETICSF PAUSE command is run or what
would be used after a manual start and restart of ICSF. If this information differs from what is in
the options data set, either the options data set should be updated to match it, or a SETICSF
OPT,REFRESH command should be run to pick up the new service option values. NEXT will always
be LNKLST unless SERVICELIBS(YES) has been specified.

D ICSF,SERVICELIBS,SYSPLEX=Y
HCR77D0 SCSFMOD0 CURRENT VOLSER
SYS1 LNKLST
SYS2 LNKLST
SYS3 SERV1.SCSFMOD0 CSFVO1
HCR77D0 SCSFMOD0 NEXT
SYS1 SYS1.SRV1 SRVDR1
SYS2 SYS1.SRV1 SRVDR1
SYS3 SERV1.SCSFMOD0 SRVDR1
HCR77D0 SIEALNKE CURRENT VOLSER
SYS1 LNKLST
SYS2 LNKLST
SYS3 SERV1.SIEALNKE CSFVO1
HCR77D0 SIEALNKE NEXT
SYS1 SYS1.SRV1 SRVDR1
SYS2 SYS1.SRV1 SRVDR1
SYS3 SERV1.SIEALNKE CSFVO1

112 z/OS: z/OS ICSF System Programmer's Guide

SYSPLEX(YES or NO)
The SYSPLEX keyword increases the scope of the Display ICSF command to all participating members
of the sysplex. The Display ICSF output is grouped according to CPC Name and shows the results of
the Display ICSF command as it was executed on each member. Specify SYSPLEX=Yes to execute the
command on all systems. Otherwise, specify SYSPLEX=No to execute the command only on the local
(initiating) system. SYSPLEX=No is the default.

For example:

D ICSF,CARDS,SYSPLEX=Y

CSFM668I 11.49.49 ICSF CARDS 919
 CPC Name = R01 CPC Sequence# = 0000000000042E08
 CRYPTO EXPRESS6 COPROCESSOR 6C57 SERIAL#=99EA6003 LEVEL=6.0.00z
 SYSA DOMAIN=000 Active REQUESTS=0000
 PCI-HSM=2016 MIGRATION
 SYSB DOMAIN=002 Active
 REQ=4294967295 ACT=0008
 SYSC DOMAIN=008 Active
 REQ=N/A ACT=0001
 CRYPTO EXPRESS5 COPROCESSOR 5P58 SERIAL#=97006035 LEVEL=02.09
 SYSA DOMAIN=000 Active
 REQ=0000000100 ACT=0005
 SYSB DOMAIN=002 Active
 REQ=0000000010 ACT=0003
 SYSC DOMAIN=008 Active
 REQ=N/A ACT=0007
 CPC Name = R02 CPC Sequence# = 0000000000042E09
 CRYPTO EXPRESS5 COPROCESSOR 5P59 SERIAL#=97006102 LEVEL=02.09
 SYSA DOMAIN=000 Active
 REQ=0000000030 ACT=0006
 CRYPTO EXPRESS5 ACCELERATOR 5P60
 SYSC DOMAIN=008 Active
 REQ=+000085315 ACT=0004

SYSA D ICSF,OPT,SYSPLEX=Y

SYSA CSFM668I 11.36.35 ICSF OPTIONS 995
 SYSNAME = SYSA ICSF LEVEL = HCR77B1
 LATEST ICSF CODE CHANGE = 01/09/15
 Refdate update interval in Days/HH.MM.SS = 030/00.00.00
 Refdate update period in Days/HH.MM.SS = 000/01.00.00
 MASTERKCVLEN = display 3 digits
 SYSNAME = SYSB ICSF LEVEL = HCR77B1
 LATEST ICSF CODE CHANGE = 01/09/15
 Refdate update interval in Days/HH.MM.SS = 005/00.00.00
 Refdate update period in Days/HH.MM.SS = 000/01.00.00
 MASTERKCVLEN = display 3 digits

Usage Notes
For information on how to limit the use of MVS console commands to a specific set of users, see the
System Operations topic in z/OS MVS System Commands.

SETICSF
The SETICSF command is used to perform the following specific administration functions:

• Activate, deactivate, or restart a cryptographic device.
• Add, check, or delete a regional cryptographic device.
• Attempt to reopen sockets that were not previously opened.
• Change a subset of ICSF's installation options.
• Enable or disable updates to a key data set (KDS).
• Change cryptographic usage tracking options.
• Change key lifecycle auditing options.
• Change key usage auditing options.

Chapter 4. Operating ICSF 113

• Pause transactions until ICSF is restarted.
• Refresh some options in the installation options data set.

Note: For additional information on these administrative functions and their impact on ICSF and
cryptographic devices, see z/OS Cryptographic Services ICSF Administrator's Guide.

114 z/OS: z/OS ICSF System Programmer's Guide

Syntax
SETICSF

ACTivate

DEACTivate

RESTART

, REMOTEdevice | RD

, SN = serialnumber

, INDEX = indexlist

CHECK

DELETE

, REMOTEdevice | RD , SN = serialnumber

, INDEX = indexlist

ENable

DISable

, CKDS

, PKDS

, TKDS

OPTions , AUDITKEYLIFECKDS

AUDKLC

, TOKen={Yes|No}

, LABel={Yes|No}

AUDITKEYLIFEPKDS

AUDKLP

, TOKen={Yes|No}

, LABel={Yes|No}

AUDITKEYLIFETKDS

AUDKLT

, TOKenObj={Yes|No}

, SESSionObj={Yes|No}

AUDITKEYUSGCKDS

AUDKUC

, TOKen={Yes|No}

, LABel={Yes|No}

, INTerval = usginterval

AUDITKEYUSGPKDS

AUDKUP

, TOKen={Yes|No}

, LABel={Yes|No}

, INTerval = usginterval

AUDITPKCS11USG

AUDP11U

, TOKenObj={Yes|No}

, SESSionObj={Yes|No}

, NOKEY={Yes|No}

, INTerval = usginterval

,

MKCVLEN = value

RISEC = interval

RPSEC = period

REFRESH

STATS = (

,

ENG

SRV

ALG

NONE

)

PAUSE

, SYSPLEX No

Yes

Add keyword

Chapter 4. Operating ICSF 115

ADD , REMOTEdevice | RD , INDEX = indexlist

, IP = ip-addr-or-hostname

, PORT = port-number

, SOCK = number-sockets

Parameters
ACTivate

Activates the specified cryptographic device or devices. The valid device specifications are:
REMOTEdevice

The regional cryptographic server or servers (remote device or devices). REMOTEdevice is
optional.

Notes:

• At least one REMOTEDEVICE option must have been specified in the ICSF installation options
data set prior to ICSF being started in order for the SETICSF ACTivate,REMOTEdevice command
to be operational.

• In addition, the current machine type must be an IBM zEnterprise EC12 or later machine.
• If ICSF is started without any REMOTEDEVICE entries specified in the ICSF installation options

data set or while running on a machine type other than an IBM zEnterprise EC12 or later
machine, the command fails, and ICSF issues message CSFM670I.

SN=serialnumber
Specify the serial number or numbers of the device or devices to be activated. The serialnumber
value can be a single serial number or a list of serial numbers separated by commas. When more
than one value is provided, the set of values must be enclosed in parentheses. For example:

SN=99AE6012
SN=(99AE6012,99AE6013,99AE6014)

INDEX=indexlist
Specify the index or indexes of the device or devices to be activated. The valid range is 0 to 63, or
1-16 when REMOTEdevice is specified. The indexlist value can be a single device index, a range of
indexes separated by a colon, or a combination of the two separated by commas. When more than
one value is provided, the set of values must be enclosed in parentheses. For example:

INDEX=01
INDEX=(02:08)
INDEX=(02,04:07,09)

Note: To understand how the use of the INDEX value with the SYSPLEX parameter can result in
devices with different serial numbers being modified on other systems sharing the KDS, see the
explanation of the SYSPLEX parameter.

ADD
Adds a regional cryptographic server (single system only).

Notes:

• At least one REMOTEDEVICE option must have been specified in the ICSF installation options data
set prior to ICSF being started in order for the SETICSF ADD,REMOTEdevice command to be
operational.

• In addition, the current machine type must be an IBM zEnterprise EC12 or later machine.
• If ICSF is started without any REMOTEDEVICE entries specified in the ICSF installation options data

set or while running on a machine type other than an IBM zEnterprise EC12 or later machine, the
ADD command fails and ICSF issues message CSFM670I.

• SYSPLEX=YES is not supported for the SETICSF ADD,REMOTEdevice command.

116 z/OS: z/OS ICSF System Programmer's Guide

REMOTEdevice|RD
The regional cryptographic server or servers (remote device or devices). All of the following
operands must be specified:
INDEX=index-number

Specify the index of the device to be added. Specify a number between 1 and 16, inclusive.
Each operational REMOTEDEVICE must have a unique number so SETICSF ADDing a index that
already exists will fail. For indexes that are repeated, ICSF will only save the last one specified.
Additionally, if remote devices or ports are shared between sysplex members, it is strongly
recommended that the same index number is used for each member.

IP=ip-addr-or-hostname
Specify the dotted-decimal Internet protocol (IP) version 4 address or the hostname of the
remote device. Each ip-addr-or-hostname must locate a single device with fixed serial number.
Reverse proxy arrangements where one ip-addr-or-hostname is backed by multiple devices
(with different serial numbers) is not supported. The opposite arrangement (one serial number
assigned to multiple ip-addr-or-hostnames) is supported, but not recommended.

Notes:

• Hostnames are not case-sensitive and are stored and displayed by ICSF in lowercase.

PORT=port-number
Specify the port number to be used in conjunction with the IP address or hostname when
connecting.

Note: No two ICSF instances may share the same port on a regional cryptographic server.
Additionally, it is expected that different workloads (for example, ICSF instances using
different token data sets) sharing a regional cryptographic server would use different master
keys (RCS-MKs) and that the required RCS-MK for the TKDS would be assigned on a per port
basis.

SOCK=number-sockets
Specify the maximum number of sockets ICSF is to open for connections with the remote
device. This is a value between 1 and 8, inclusive. Multiple sockets are required in order for
ICSF to process multiple simultaneous requests. Consult the remote device's documentation
to determine this value. There is an ICSF limit of 8 sockets per REMOTEDEVICE entry. If you
desire more than 8 socket connections to a single server, then configure multiple ports on the
server and define multiple REMOTEDEVICE entries, one per port. Note that the index value
must be unique for each entry.

CHECK
Attempts to reopen sockets that were not previously opened.
REMOTEdevice

The regional cryptographic server or servers (remote device or devices).

Notes:

• At least one REMOTEDEVICE option must have been specified in the ICSF installation options
data set prior to ICSF being started in order for the SETICSF CHECK,REMOTEdevice command to
be operational.

• In addition, the current machine type must be an IBM zEnterprise EC12 or later machine.
• If ICSF is started without any REMOTEDEVICE entries specified in the ICSF installation options

data set or while running on a machine type other than an IBM zEnterprise EC12 or later
machine, the command fails, and ICSF issues message CSFM670I.

Chapter 4. Operating ICSF 117

SN=serialnumber
Specify the serial number or numbers of the device or devices to be checked. The serialnumber
value can be a single serial number or a list of serial numbers separated by commas. When more
than one value is provided, the set of values must be enclosed in parentheses. For example:

SN=99AE6012
SN=(99AE6012,99AE6013,99AE6014)

INDEX=indexlist
Specify the index or indexes of the device or devices to be checked. Specify a number between 1
and 16, inclusive. The indexlist value can be a single device index, a range of indexes separated by
a colon, or a combination of the two separated by commas. When more than one value is
provided, the set of values must be enclosed in parentheses. For example:

INDEX=01
INDEX=(02:08)
INDEX=(02,04:07,09)

DEACTivate
Deactivates specified cryptographic devices. The valid device specification are:
REMOTEdevice

The regional cryptographic server or servers (remote device or devices). REMOTEdevice is
optional.

Notes:

• At least one REMOTEDEVICE option must have been specified in the ICSF installation options
data set prior to ICSF being started in order for the SETICSF DEACTivate,REMOTEdevice
command to be operational.

• In addition, the current machine type must be an IBM zEnterprise EC12 or later machine.
• If ICSF is started without any REMOTEDEVICE entries specified in the ICSF installation options

data set or while running on a machine type other than an IBM zEnterprise EC12 or later
machine, the command fails, and ICSF issues message CSFM670I.

SN=serialnumber
Specify the serial number or numbers of the device or devices to be deactivated. The serialnumber
value can be a single serial number or a list of serial numbers separated by commas. When more
than one value is provided, the set of values must be enclosed in parentheses. For example:

SN=99AE6012
SN=(99AE6012,99AE6013,99AE6014)

INDEX=indexlist
Specify the index or indexes of the device or devices to be deactivated. The valid range is 0 to 63,
or 1-16 when REMOTEdevice is specified. The indexlist value can be a single device index, a range
of indexes separated by a colon, or a combination of the two separated by commas. When more
than one value is provided, the set of values must be enclosed in parentheses. For example:

INDEX=01
INDEX=(02:08)
INDEX=(02,04:07,09)

Note: To understand how the use of the INDEX value with the SYSPLEX parameter can result in
devices with different serial numbers being modified on other systems sharing the KDS, see the
explanation of the SYSPLEX parameter.

DELETE
Removes a regional cryptographic server from a system or systems.
REMOTEdevice

The regional cryptographic server or servers (remote device or devices).

Notes:

118 z/OS: z/OS ICSF System Programmer's Guide

• At least one REMOTEDEVICE option must have been specified in the ICSF installation options
data set prior to ICSF being started in order for the SETICSF DELETE,REMOTEdevice command
to be operational.

• In addition, the current machine type must be an IBM zEnterprise EC12 or later machine.
• If ICSF is started without any REMOTEDEVICE entries specified in the ICSF installation options

data set or while running on a machine type other than an IBM zEnterprise EC12 or later
machine, the command fails, and ICSF issues message CSFM670I.

SN=serialnumber
Specify the serial number or numbers of the device or devices to be deleted. The serialnumber
value can be a single serial number or a list of serial numbers separated by commas. When more
than one value is provided, the set of values must be enclosed in parentheses. For example:

SN=99AE6012
SN=(99AE6012,99AE6013,99AE6014)

INDEX=indexlist
Specify the index or indexes of the device or devices to be deleted. Specify a number between 1
and 16, inclusive. The indexlist value can be a single device index, a range of indexes separated by
a colon, or a combination of the two separated by commas. When more than one value is
provided, the set of values must be enclosed in parentheses. For example:

INDEX=01
INDEX=(02:08)
INDEX=(02,04:07,09)

DISable
Disables updates for the specified key data set. The valid KDS specifications are:

• CKDS
• PKDS
• TKDS

ENable
Enables updates for the specified key data set. The valid KDS specifications are:

• CKDS
• PKDS
• TKDS

OPTions
Changes the value of an ICSF option. The supported options are:
AUDITKEYLIFECKDS,AUDKLC

Changes one or more options related to lifecycle auditing of CKDS labels and tokens.
LABEL,LAB = YES|NO

YES
Enables key lifecycle auditing of CKDS labels.

NO
Disables key lifecycle auditing of CKDS labels.

TOKEN,TOK = YES|NO
YES

Enables key lifecycle auditing of CKDS tokens.
NO

Disables key lifecycle auditing of CKDS tokens.
Example:

AUDITKEYLIFECKDS,LABEL=YES,TOKEN=NO

Chapter 4. Operating ICSF 119

AUDITKEYLIFEPKDS,AUDKLP
Changes one or more options related to lifecycle auditing of PKDS labels and tokens.
LABEL,LAB = YES|NO

YES
Enables key lifecycle auditing of PKDS labels.

NO
Disables key lifecycle auditing of PKDS labels.

TOKEN,TOK = YES|NO
YES

Enables key lifecycle auditing of PKDS tokens.
NO

Disables key lifecycle auditing of PKDS tokens.
Example:

AUDKLP,TOK=NO,LABEL=YES

AUDITKEYLIFETKDS,AUDKLT
Changes one or more options related to lifecycle auditing of TKDS token objects and session
objects.
TOKENOBJ,TOKO = YES|NO

YES
Enables key lifecycle auditing of TKDS token objects.

NO
Disables key lifecycle auditing of TKDS token objects.

SESSIONOBJ,SESSO = YES|NO
YES

Enables key lifecycle auditing of TKDS token objects.
NO

Disables key lifecycle auditing of TKDS token objects.
Example:

AUDKLT,TOKO=YES
AUDKLT,TOKO=YES,SESSO=YES

AUDITKEYUSGCKDS,AUDKUC
Changes one or more options related to key usage auditing of CKDS labels and tokens.
LABEL,LAB = YES|NO

YES
Enables key usage auditing of CKDS labels.

NO
Disables key usage auditing of CKDS labels.

TOKEN,TOK = YES|NO
YES

Enables key usage auditing of CKDS tokens.
NO

Disables key usage auditing of CKDS tokens.
INTERVAL,INT = usginterval[H|M|S]

The interval over which key usage records are aggregated before being written out to SMF. The
time unit may be specified as H – hours, M – minutes, or S – seconds. If the time unit is not
specified, the default is S - seconds. The minimum value of usginterval is 1 second. The
maximum value is 24 hours.

120 z/OS: z/OS ICSF System Programmer's Guide

Example:

AUDKUC,LABEL=YES,TOK=YES
AUDKUC,INT=8H

AUDITKEYUSGPKDS,AUDKUP
Changes one or more options related to key usage auditing of PKDS labels and tokens.
LABEL,LAB = YES|NO

YES
Enables key usage auditing of PKDS labels.

NO
Disables key usage auditing of PKDS labels.

TOKEN,TOK = YES|NO
YES

Enables key usage auditing of PKDS tokens.
NO

Disables key usage auditing of PKDS tokens.
INTERVAL,INT = usginterval[H|M|S]

The interval over which key usage records are aggregated before being written out to SMF. The
time unit may be specified as H – hours, M – minutes, or S – seconds. If the time unit is not
specified, the default is S - seconds. The minimum value of usginterval is 1 second. The
maximum value is 24 hours.

Example:

AUDITKEYUSGPKDS,LAB=YES,TOKEN=NO
AUDKUP,LAB=YES,TOKEN=NO,INT=3600

AUDITPKCS11USG,AUDP11U
Changes one or more options related to usage auditing of PKCS #11 services.
TOKENOBJ,TOKO = YES|NO

YES
Enables key usage auditing of PKCS #11 token objects.

NO
Disables key usage auditing of PKCS #11 token objects.

SESSIONOBJ,SESSO = YES|NO
YES

Enables key usage auditing of PKCS #11 session objects.
NO

Disables key usage auditing of PKCS #11 session objects.
NOKEY = YES|NO

YES
Enables usage auditing of PKCS #11 services which do not involve an object.

NO
Disables usage auditing of PKCS #11 services which do not involve an object.

INTERVAL,INT = usginterval[H|M|S]
The interval over which key usage records are aggregated before being written out to SMF. The
time unit may be specified as H – hours, M – minutes, or S – seconds. If the time unit is not
specified, the default is S - seconds. The minimum value of usginterval is 1 second. The
maximum value is 24 hours.

Chapter 4. Operating ICSF 121

Example:

AUDP11U,TOKO=YES,SESSIONOBJ=NO
AUDP11U,TOKO=YES,SESSIONOBJ=NO,NOKEY=YES,INTERVAL=1440M

MKCVLEN = value
Specifies the number of hexadecimal digits to display on the ICSF Coprocessor Hardware Status
panel (CSFCMP40) for the verification and hash patterns for the master keys. The patterns are also
referred to as key check values. The value may be 2, 3, 4, 5, 6, or ALL. When an integer value is
specified, that number of digits will displayed. When ALL is specified, all digits will be displayed.

This option can be used to be in compliance with the ISO11568 standard for display of the key
check values for master keys.

Notes:

• This option corresponds to the MASTERKCVLEN option in the ICSF installation options data set.
Be aware that when ICSF is restarted, the value will revert to the value specified by the
MASTERKCVLEN option in the ICSF installation options data set.

• This option has no effect on the output of the DISPLAY ICSF,MKS command.

PAUSE
ICSF terminates after all in-flight transactions finish, and any new transactions are paused until
ICSF is restarted. ICSF must then be restarted via ARM policy, customer automation, or manually.
Upon restart, ICSF is loaded from the specified service data set, and paused transactions resume.

Note: Before issuing the SETICSF PAUSE command, see “Dynamic service update” on page 132.

REFRESH
Refreshes supported option parameters whose values have been updated in the current
installation options data set listed in the ICSF startup procedure on the CSFPARM DD statement or
from the CSFPRMxx member in the parmlib concatenation.

Refreshable option parameters are AUDITKEYLIFECKDS, AUDITKEYLIFEPKDS,
AUDITKEYLIFETKDS, AUDITKEYUSGCKDS, AUDITKEYUSGPKDS, AUDITPKCS11USG, BEGIN,
CHECKAUTH, CICSAUDIT, COMPLIANCEWARN, DEFAULTWRAP, END, FIPSMODE, KEYARCHMSG,
KDSREFDAYS, MASTERKCVLEN, MAXSESSOBJECTS, RNGCACHE, SSM, USERPARM, and
WAITLIST.

RISEC = interval
Specifies, in seconds, how often a record should be written for a reference date/time change. The
values must be between 0 (write a record for every reference) and 2592000 (30 days) seconds.
For example:

RISEC=300

Note: OPTions,RISEC corresponds to the KDSREFDAYS option in the ICSF options data set, which
can only be specified in full days. When the RISEC option has been used to change the refdate
interval, the value for KDSREFDAYS on the Installation Options Display panel is set to SETICSF to
indicate that the current value has been modified from the value that is set in the installation
options dataset.

RPSEC = period
Specifies how often in seconds ICSF hardens refdate updates to the appropriate key data set. The
value must be between 10 and 3600. For example:

RPSEC=30

Note: There is no corresponding keyword in the ICSF options data set for the RPSEC option. The
value can only be changed using the SETICSF command.

STATS
Updates cryptographic usage tracking options. Keywords can be combined to track multiple
statistics.

122 z/OS: z/OS ICSF System Programmer's Guide

Each issuance of the command replaces the prior settings. For example, if ENG is tracked and SRV
is to be added, then STATS=(ENG,SRV) must be issued.
ENG

Enables usage tracking of cryptographic engines. Supports Crypto Express adapters, regional
cryptographic servers, CPACF, and software.

SRV
Enables usage tracking of cryptographic services. Supports ICSF callable services and UDXes
only.

ALG
Enables usage tracking of cryptographic algorithms. Supports cryptographic algorithms that
are referenced in cryptographic operations. Limited support for key generation, key derivation,
and key import.

NONE
Disables usage tracking of cryptographic statistics.

Installation options that are modified by the SETICSF command are in effect only until ICSF is
stopped or restarted. When ICSF is restarted, the installation options are re-initialized from the ICSF
installation options data set. If you want to make the changes permanent, the installation options data
set must be manually updated as needed.

RESTART
Restarts specified cryptographic devices. For the specified devices, the work queues are cleared and
ICSF runs through normal configuration processing in an attempt to return a device that is in an error
state to an active state. This is most appropriate for a device that has had an error such as CARD
BUSY. The valid device specification are:
REMOTEdevice

The regional cryptographic server or servers (remote device or devices). REMOTEdevice is
optional.

Notes:

• At least one REMOTEDEVICE option must have been specified in the ICSF installation options
data set prior to ICSF being started in order for the SETICSF RESTART,REMOTEdevice command
to be operational.

• In addition, the current machine type must be an IBM zEnterprise EC12 or later machine.
• If ICSF is started without any REMOTEDEVICE entries specified in the ICSF installation options

data set or while running on a machine type other than an IBM zEnterprise EC12 or later
machine, the command fails, and ICSF issues message CSFM670I.

SN=serialnumber
Specify the serial number or numbers of the device or devices to be restarted. The serialnumber
value can be a single serial number or a list of serial numbers separated by commas. When more
than one value is provided, the set of values must be enclosed in parentheses. For example:

SN=99AE6012
SN=(99AE6012,99AE6013,99AE6014)

INDEX=indexlist
Specify the index or indexes of the device or devices to be restarted. The valid range is 0 to 63, or
1-16 when REMOTEdevice is specified. The indexlist value can be a single device index, a range of
indexes separated by a colon, or a combination of the two separated by commas. When more than
one value is provided, the set of values must be enclosed in parentheses. For example:

INDEX=01
INDEX=(02:08)
INDEX=(02,04:07,09)

Chapter 4. Operating ICSF 123

Note: To understand how the use of the INDEX value with the SYSPLEX parameter can result in
devices with different serial numbers being modified on other systems sharing the KDS, see the
explanation of the SYSPLEX parameter.

SYSPLEX(YES or NO)
The SYSPLEX keyword increases the scope of the SETICSF command to all participating members of
the sysplex. The SETICSF command is executed locally on the initiating system and then again on
each participating member of the sysplex. The output indicates which systems were able to process
the request as well as those systems that were not able to process the request due to a lack of
support or an error.

Specify SYSPLEX=Yes to execute the command on all systems. When SYSPLEX=YES is specified, the
command may affect cryptographic devices on all systems within the sysplex as follows:

• When SN is specified, all cryptographic devices that have the specified serial number or numbers
are affected. No other filtering criteria is applied.

• When INDEX is specified instead of SN, additional filtering criteria is applied. Cryptographic devices
that do not meet this criteria are skipped:

– The command will only affect those systems within the sysplex that share the same TKDS via the
SYSPLEXTKDS(YES,...) ICSF installation option. This includes the originating system.

– For each such system, both the index or indexes and serial number or numbers must match that
of the system where the command was issued. For example:

- The command SETICSF DEACT,REMOTE,INDEX=1,SYSPLEX=YES would deactivate the remote
device at index 01 on the originating system as well as the remote device at index 01 on any
system sharing the TKDS provided that the remote device at index 01 on that system represents
the same regional cryptographic server (same serial number).

- If the REMOTE keyword is not specified, the use of SYSPLEX with INDEX results in the
command action being performed on all devices at that index on the originating system as well
as the cryptographic device at that index on any system that is sharing the KDS.

For example, the command SETICSF DEACT,INDEX=1,SYSPLEX=YES would deactivate the
cryptographic device at index 01 on the originating system as well as the cryptographic device
at index 01 on any system sharing the KDS. In this case, it is better to use SN rather than INDEX
as the SETICSF DEACT command can affect devices that have different serial numbers when
INDEX is used with SYSPLEX=YES and the command is issued without the REMOTE keyword.

Specify SYSPLEX=No to execute the command only on the local (initiating) system. When
SYSPLEX=NO is specified or defaulted, the command affects only the remote device connections on
the system where the command was issued.

SYSPLEX=No is the default.

Usage Notes
Installation options modified by the SETICSF command are in effect only until ICSF is stopped or
restarted. When ICSF is restarted, the installation options will be re-initialized from the ICSF installation
options data set. If you want to make the changes permanent, the installation options data set must be
manually updated as needed.

For information on how to limit the use of MVS console commands to a specific set of users, see the
System Operations topic in z/OS MVS System Commands.

Using different configurations
A central processor complex can have multiple cryptographic features of various types. This topics
describes some of the different configurations available.

124 z/OS: z/OS ICSF System Programmer's Guide

You can divide your processor complex into PR/SM logical partitions. When you create logical partitions on
your processor complex, you use the usage domain index on the Support Element Customize Image
Profile page only if you have, or plan to add a cryptographic feature.

The DOMAIN parameter is optional. The number that is specified for the usage domain index must
correspond to the domain number you specified with the DOMAIN(n) keyword in the installation options
data set – if you specified one. The DOMAIN keyword is required if more than one domain is specified as
the usage domain on the PR/SM panels.

A cryptographic feature can be configured and shared across multiple partitions.

Note: The domain assigned to the TKE Host LPAR must be unique if TKE is to control all the coprocessor
cards in the environment. No other LPAR can use the domain assigned to the TKE Host.

The maximum number of LPARs depends on your server. The maximum number of usage domains
matches the maximum number of LPARs available on the server. A usage domain can be configured to be
unique to one LPAR or assigned to different LPARs accessing different cryptographic features. This is
illustrated by LPAR 1 and LPAR 3 in Figure 1 on page 125. They are both assigned to usage domain 0, but
on two different CEXnAs.

Figure 1. Multiple Crypto coprocessors on a complex

Adding and removing cryptographic coprocessors
It may become necessary for your installation to add or remove cryptographic features. This topic gives
you a brief overview of the hardware implications. For more detailed information, refer to the zSeries
PR/SM Planning Guide and the zSeries Hardware Management Console Operations Guide (OS/2).

There are several terms associated with removing the features. Use the Support Element (SE) panel to
configure cryptographic features online and offline (standby). Use the ICSF Coprocessor Management
panel from your TSO user ID to activate and deactivate cryptographic features. Use the TKE workstation
to enable and disable cryptographic coprocessors.

Adding cryptographic coprocessors
You can dynamically add cryptographic features. You must have feature 3863 installed on your system.

The cryptographic feature number must be in the Candidates list of the LPAR Activation panel. Configure
On the card. Each feature will display. For coprocessors, once the master keys are entered, they become
active. The accelerator will automatically become active.

Chapter 4. Operating ICSF 125

Note: ALL crypto coprocessors cards must be loaded with the same level of code. Otherwise,
unpredictable results can occur. When updating licensed internal code (LIC) on the coprocessors:

• You can migrate to new LIC levels on the coprocessors one at a time without taking an outage, and
• you need to complete the LIC upgrade on all coprocessors before trying to exploit a new function

introduced by the new LIC.

Steps for activating/deactivating cryptographic coprocessors
From your TSO userid, select option 1, Coprocessor Mgmt. On the Coprocessor Management panel, you
can select the features you want to activate or deactivate.

CSFCMP00 ---------------- ICSF Coprocessor Management -------- Row 1 to 5 of 5
COMMAND ===> SCROLL ===> PAGE

 Select the cryptographic features to be processed and press ENTER.
 Action characters are: A, D, E, K, R and S. See the help panel for details.

 CRYPTO SERIAL
 FEATURE NUMBER STATUS AES DES ECC RSA P11
 ------- -------- -------------------- --- --- --- --- ---
. 4A00 N/A Active
. 4P38 97006070 Active A
a 4C39 93X06044 Deactivated
d 4C40 93X06077 Master key incorrect C C U C
. 4C41 93X06071 Active A A A A
******************************* Bottom of data ********************************

Figure 2. ICSF coprocessor management

When a coprocessor or accelerator is deactivated through the Coprocessor Management Panel, the card is
only deactivated for that one LPAR.

Note: On systems running ICSF FMID HCR77B1 or later, the SETICSF ACTivate and the SETICSF
DEACTivate commands can also be used to activate or deactivate coprocessors and accelerators.

Steps to configure on/off cryptographic coprocessors
To configure the cryptographic features online and offline, you must use the support element (SE) panel.

Before configuring a feature offline, it is strongly recommended that you deactivate the feature first from
the ICSF Coprocessor Management panel. You need to 'deactivate' the feature in ALL partitions that are
using that feature. This allow jobs to complete before the feature is varied offline. You use the Configure
On/Off service on the Support Element panel to take the feature offline (standby).

After you configure the feature offline from the SE panel, press ENTER on the Coprocessor Management
panel to verify that the feature is offline. This configuring is done to remove and replace features or to load
new code for the cryptographic features.

To bring a feature back online, use the SE panel again. If a feature was deactivated and then configured
offline, you will need to activate it again through the Coprocessor Management panel.

There are no z/OS operator commands to configure the devices online or offline.

Steps for enabling/disabling cryptographic coprocessors
With TKE you can disable/enable coprocessors. When a coprocessor is deactivated through the
Coprocessor Management Panel, the coprocessor is only deactivated for that one LPAR. When a
coprocessor disabled by TKE, the card is disabled for the entire system, not just the LPAR that issued the
disable.

126 z/OS: z/OS ICSF System Programmer's Guide

Intrusion latch on the cryptographic coprocessors
Under normal operation, the intrusion latch on a coprocessor is tripped when the feature is removed. This
causes all installation data, master keys, retained keys, roles and authorities to be zeroized in the feature
when it is reinstalled.

If a situation arises where a coprocessor needs to be removed, for example, you need to remove your
feature for service, and you do not want the installation data to be cleared, perform this procedure to
disable the coprocessor before removing.

This process will require you to switch between the TKE application, the ICSF Coprocessor Management
panel, and the Support Element.

1. Open an Emulator Session on the TKE workstation and logon to your TSO userid on the Host System
where the coprocessor will be removed.

2. From the ICSF Primary Option Menu on TSO, select Option 1 for Coprocessor Management.
3. Leave the Coprocessor Management panel displayed during the rest of this procedure. You will be

required to press ENTER on the Coprocessor Management panel at different times. DO NOT EXIT this
panel.

4. Open the TKE Host where the coprocessor will be removed. Open the coprocessor. Click on Disable
Crypto Module.

5. After the coprocessor has been disabled from TKE, press ENTER on the Coprocessor Management
panel. The status should change to DISABLED.

Note: You do not need to deactivate a disabled card.
6. Configure Off the coprocessor from the Support Element.
7. After the card has been taken Offline, press ENTER on the Coprocessor Management panel. The

status should change to OFFLINE.
8. Remove the coprocessor. Perform whatever operation needs to be done. Replace the coprocessor.
9. Configure On the coprocessor from the Support Element.

10. When the initialization process is complete, press ENTER on the Coprocessor Management panel. The
status should change to DISABLED.

11. From the TKE Workstation Crypto Module General page, click on Enable Crypto Module.
12. After the coprocessor has been enabled from TKE, press ENTER on the Coprocessor Management

panel. The Status should return to its original state. If the Status was ACTIVE in step 2, when the
coprocessor is enabled it should return to ACTIVE.

All installation data, master keys, retained keys, roles, and authorities should still be available. The
coprocessor data was not cleared with the card removal because it was Disabled first via the TKE
workstation.

Adding and removing regional cryptographic servers
Regional cryptographic servers are network-attached, standalone devices or dedicated Linux LPARs that
perform geography-specific cryptography. These servers are secure key hardware security modules
(HSMs) that operate similar to IBM's PKCS #11 secure coprocessors (CEXnP). They are marketed and
serviced by third party vendors. Currently, the only geography-specific cryptography supported by these
devices is the Chinese SMx family of algorithms. Secure keys are stored in the TKDS, protected by the
Regional Cryptography Server Master Key (RCS-MK).

The network-attached, stand-alone devices require no particular zSeries hardware, but does require
communicating with z/OS V1R13 or later and ICSF FMID HCR77B1 or later. ICSF communicates with
these devices using TCP/IP, with optional TLS protection. The Linux LPARs require IBM z13 or later
hardware. ICSF communicates with the Linux LPARs using TCP/IP, with TLS protection required.

Once configured and online, ICSF makes the algorithms offered by these devices available as PKCS #11
vendor-defined extensions. For information on the algorithms offered, see z/OS Cryptographic Services

Chapter 4. Operating ICSF 127

ICSF Writing PKCS #11 Applications and z/OS Cryptographic Services ICSF Application Programmer's
Guide.

Steps to add a regional cryptographic server
To enable ICSF to use a regional cryptographic server, you need to complete the following tasks:

1. Follow the vendor's documentation to setup the regional cryptographic server. At a minimum, you
must perform the following operations and record the necessary information:

• Establish the TCP/IP hostname or IP address for the device. Record the value: ________
• Configure the device to listen on a specified port. Record the port number: _______

Note: It is important that a unique port be opened for each instance of ICSF that will use the device.
• Determine the optimal number of sockets to be opened by a given instance of ICSF on the port it will

be using. Record the number of sockets: ________
• Set the socket inactivity timeout value.

Note: It is important that you configure the device such that the sockets will never time out.
• Set the regional cryptographic server master key (RCS-MK) to be used for the port.

Notes:

a. All regional cryptographic servers in use by a given instance of ICSF must have the same RCS-MK
set on each port used by this particular instance of ICSF.

b. All instances of ICSF that share a given TKDS must have the same RCS-MK set on the ports that
these ICSF instances will use.

• If TLS protection is desired, configure the device to use TLS. Record whether your device is
configured with TLS protection or with no TLS protection: ________

Note: See “Setup AT-TLS (optional)” on page 130 if you need to provision the device with an X.509
certificate for use with TLS.

2. Allocate and assign a TKDS to ICSF if one is not already assigned. For additional information, see
“Creating the TKDS” on page 19.

3. Configure ICSF to use TCP/IP. See “Configuring ICSF to use TCP/IP for communications with regional
cryptographic servers” on page 129 for additional information.

If TLS is desired, optionally generate the certificates necessary using Security Server (RACF) or an
equivalent product and provision the regional cryptographic server accordingly.

4. Define the REMOTEDEVICE entry in the ICSF options data set for this regional cryptographic server and
restart ICSF.

• Optionally, you can issue the SETICSF ADD,REMOTEDEVICE console command to dynamically add
the regional cryptographic server to ICSF as long as at least one REMOTEDEVICE entry was added to
the ICSF options data set prior to the current start of ICSF and your system is running ICSF FMID
HCR77B1 or later.

Steps to remove a regional cryptographic server
A regional cryptographic server may be dynamically removed by issuing the SETICSF
DELETE,REMOTEDEVICE console command. For additional information on the SETICSF console
command, see “Changing regional cryptographic server status using the SETICSF operator command” on
page 131.

If the regional cryptographic server being removed was defined to ICSF using a REMOTEDEVICE entry in
the ICSF options data set, remove the entry from the options data set to make the removal of this regional
cryptographic server permanent.

128 z/OS: z/OS ICSF System Programmer's Guide

Configuring ICSF to use TCP/IP for communications with regional
cryptographic servers

The Transmission Control Protocol (TCP) and the Internet Protocol (IP) is a protocol suite that allows
communications in a network. If you intend to use regional cryptographic servers with ICSF, you must
configure ICSF to use TCP/IP. z/OS Communications Server provides the TCP/IP networking protocol on
z/OS. It also provides Application Transparent Transport Layer Security (AT-TLS), which allows client and
server applications to communicate safely using TCP/IP. While ICSF does not require the use of AT-TLS, it
is highly recommended.

For information about configuring TCP/IP, see:

• z/OS Communications Server: IP Configuration Guide
• z/OS Communications Server: IP Configuration Reference

Note: In an ICSF regional cryptographic server network, ICSF goes outbound to connect to the regional
cryptographic server or servers and never listens on a port for incoming connections. Therefore, ICSF
always plays the role of a client, not a server, when using TCP/IP.

Steps to configure ICSF to use TCP/IP
You need to perform the following tasks to set up ICSF to use TCP/IP:

• “Setup the ICSF address space for z/OS UNIX System Services” on page 129
• “Give the ICSF address space access to the TCP/IP stack” on page 129
• “Setup AT-TLS (optional)” on page 130

Setup the ICSF address space for z/OS UNIX System Services
In order to use TCP/IP, the ICSF started task address space must be DUBBED as a z/OS UNIX System
Services process. This requires that the user ID associated with the ICSF started task be assigned a z/OS
UNIX UID and that its default group is assigned a GID. There are multiple ways this may be done:

1. Use the BPX.UNIQUE.USER facility to automatically assign permanent OMVS segments (with unique
IDs) to user IDs the first time they are needed. This is the preferred way.

2. Use the BPX.NEXT.USER facility in conjunction with the AUTOUID and AUTOGID keywords on the
ALTUSER and ALTGROUP commands to add the next available UID and GID to the user ID and group
assigned to the ICSF started task.

3. Manually determine and assign the GID and UID to be used and add the appropriate OMVS segment to
the user ID assigned to the ICSF started task.

For information about assigning UIDs and GIDs, see z/OS Security Server RACF Security Administrator's
Guide.

Give the ICSF address space access to the TCP/IP stack
Stack access control provides a way to allow or disallow users or groups of users to access a TCP/IP stack.
The TCP/IP stack to be protected is represented by the resource EZB.STACKACCESS.sysname.tcpname in
the SERVAUTH class. If you have a SAF profile protecting this resource, the user ID assigned to the ICSF
started task must have access to it.

For more information, see the topic on stack access control in z/OS Communications Server: IP
Configuration Guide.

Default Key Label Checking
If your configuration has the Default Key Label Checking controls for Key Store Policy enabled and the
CHECKAUTH(YES) option is in effect, you need to permit the ICSF started task ID to the CSF-PKDS-
DEFAULT profile in the CSFKEYS class. To determine access to tokens that are not stored in the CKDS or
PKDS, see z/OS Cryptographic Services ICSF Administrator's Guide.

Chapter 4. Operating ICSF 129

Setup AT-TLS (optional)
If you want to encrypt ICSF's communications with a regional cryptographic server or servers, you need to
configure the z/OS Communications Server for AT-TLS. You will also need to configure each related
regional cryptographic server to perform the server role for TLS.

Note: ICSF is the client. The steps to do this are specific to the regional cryptographic server. See the
vendor provided documentation associated with the regional cryptographic server for more information.
At a minimum, the regional cryptographic server needs to be provisioned with a TLS server certificate and
its associated certificate authority (CA). How you acquire these certificates is your choice. You may use
z/OS Security Server (RACF) or equivalent certificate commands or use the z/OS Public Key Infrastructure
Services (PKI). You may also choose to purchase your certificates from a commercial certificate authority.

The following are sample z/OS Security Server (RACF) TSO commands to create the CA and server
certificates. The samples assume the following:

• The CA is to be labeled 'Regional Server CA'.
• One server certificate is to be created, where the hostname is nacc.company.com.
• The user ID assigned to the ICSF started task is ICSFU.
• All certificates are to be valid from January 1, 2015, through December 31, 2024.
• All certificates will have RSA 2048-bit keys.
• For RACDCERT EXPORT, 'hlq' is to be replaced with the desired data set high-level qualifier.

/* Create the CA certificate */
RACDCERT CERTAUTH GENCERT SUBJECTSDN(C('CN') O('Company.com')
OU('Regional Server CA')) WITHLABEL('Regional Server CA') SIZE(2048)
NOTBEFORE(DATE(2015-01-01)) NOTAFTER(DATE(2024-12-31))

/* Create the server certificate */
RACDCERT SITE GENCERT SUBJECTSDN(C('CN') O('Company.com') CN('nacc.company.com'))
WITHLABEL('nacc.company.com') SIZE(2048) NOTBEFORE(DATE(2015-01-01))
NOTAFTER(DATE(2024-12-31)) SIGNWITH(CERTAUTH LABEL('Regional Server CA'))

/* Export the server certificate and private key to be installed on the regional
server.
The password is 'RegionalServer1' */
RACDCERT SITE EXPORT(LABEL('nacc.company.com')) FORMAT(PKCS12DER)
PASSWORD('RegionalServer1') DSN('hlq.NACC.P12')

AT-TLS policy
The following is a sample z/OS Communications Server AT-TLS policy agent configuration file that may be
used to enable AT-TLS whenever ICSF connects to a regional cryptographic server:

AT-TLS Policy Agent Configuration file for ICSF Regional Crypto

TTLSRule ICSF-Client
{
 JobName CSF
 LocalAddr ALL
 RemoteAddr ALL
 RemotePortRange 1024-65535
 Direction Outbound
 Priority 255
 TTLSGroupActionRef ICSF-ClientGrp
 TTLSEnvironmentActionRef ICSF-ClientEnv
}
TTLSGroupAction ICSF-ClientGrp
{
 TTLSEnabled On
}
TTLSEnvironmentAction ICSF-ClientEnv
{
 HandshakeRole Client
 EnvironmentUserInstance 0
 TTLSEnvironmentAdvancedParms

130 z/OS: z/OS ICSF System Programmer's Guide

 {
 TLSv1 On
 TLSv1.1 On
 TLSv1.2 On
 }
 TTLSKeyringParms
 {
 Keyring CSF.ICSF.KEYRING
 }
}

Notes:

1. Check the JobName rule to ensure it matches the name of the ICSF started procedure.
2. The keyring name may be changed if desired.

AT-TLS Authorization
The ICSF started task userid must have authorization to the CSFPKE and CSFDSV profiles in the CSFSERV
class. See z/OS Communication Server: IP Configuration Guide for details on encryption algorithms.

The keyring
The client keyring (named CSF.ICSF.KEYRING in the AT-TLS policy topic) must be created and populated
with the certificate authority certificates used to issue the server certificates to the regional cryptographic
servers.

The following are sample z/OS Security Server (RACF) TSO commands to provision the keyring using the
certificate created in the AT-TLS policy topic:

/* Create the keyring under user ID ICSFU */
RACDCERT ID(ICSFU) ADDRING(CSF.ICSF.KEYRING)

/* Add the CA certificate */
RACDCERT ID(ICSFU) CONNECT(CERTAUTH LABEL('Regional Server CA')
RING(CSF.ICSF.KEYRING))

For more information on AT-TLS, see the topic, Application Transparent Transport Layer Security data
protection, in z/OS Communications Server: IP Configuration Guide.

Displaying cryptographic coprocessor status using the DISPLAY
ICSF operator command

Use the DISPLAY ICSF operator command to display information about your regional cryptographic
servers if your system is running ICSF FMID HCR77B1 and later. For additional information, see the
REMOTEDEVICE keyword in “Display ICSF” on page 104.

Adding a regional cryptographic server using the SETICSF operator
command

Use the SETICSF operator command to add a regional cryptographic server if your system is running ICSF
FMID HCR77B1 and later. For additional information, see the ADD,REMOTEDEVICE keyword in “SETICSF”
on page 113.

Changing regional cryptographic server status using the SETICSF
operator command

Use the SETICSF operator command to change the status of your regional cryptographic servers if your
system is running ICSF FMID HCR77B1 and later. For additional information, see the REMOTEDEVICE
keyword in “SETICSF” on page 113.

Chapter 4. Operating ICSF 131

Dynamic service update
Dynamic service update allows you to apply service updates to ICSF with minimal impact to ICSF
availability. It allows ICSF to activate service without a manual stop and start of ICSF. These updates
include service updates as well as changes to the options data set that cannot be applied via the SETICSF
OPT,REFRESH command. Additionally, dynamic service updates can be used to recycle ICSF when there
are problems that are not resolving.

For any service to be applied to ICSF using the dynamic service update method, there must be a +
+HOLD(DYNACT) with the PTF. Otherwise, the service cannot be applied using dynamic service update.
Dynamic service update cannot be used to migrate ICSF to a new ICSF FMID. Read “Considerations when
using dynamic service update” on page 132 and “Steps to initiate dynamic service update” on page 133
carefully before starting a dynamic service update.

The following are some possible scenarios of when you might want to use dynamic service update:

• ICSF is currently running with no service keywords. Modules reside in HLQ.SCSFMOD0 and
HLQ.SIEALNKE.

– If a SETICSF PAUSE command is issued when ICSF is running with no service keywords, no service is
loaded and ICSF comes up normally when it is restarted.

• When service is ready to be applied for ICSF, dynamic service update can be used to non-disruptively
activate the service.

– At this point, the updates can be applied. If they are satisfactory, the service can be applied to the
production HLQ.SCSFMOD0 and HLQ.SIEALNKE data sets using the normal processes for updating
LNKLST data sets.

• “Considerations when using dynamic service update” on page 132
• “Steps to initiate dynamic service update” on page 133

Considerations when using dynamic service update
• When selecting a window of time to initiate a dynamic service update:

– To reduce the overall disruption to the system applications that are using ICSF, consider a time when
ICSF has the least amount of activity. This reduces the amount of time that a dynamic service update
takes to complete.

– Specific ICSF activity at the time that a SETICSF PAUSE command is issued can prolong the length of
a dynamic service update. Avoid longer running services and management activities (for example,
changing master keys, RSA key pair generation, and so on) because this could potentially cause
timeouts for applications that get paused during the dynamic service update window.

• Performing a dynamic service update discards all PKCS #11 session objects. All applications and
components that use session objects will need to recreate them. Therefore, all applications that rely on
these session objects should be quiesced prior to the dynamic service update.

• If activating dynamic service update for more than one system in a sysplex, it is recommended that you
issue the SETICSF PAUSE command on one system at a time. You can then verify that ICSF has
successfully restarted before proceeding to apply service to the other systems.

• The SERVSCSFMOD0 and SERVSIEALNKE options data set keywords define the service data sets for use
with dynamic service update. The service data sets used to contain service SERVSCSFMOD0 and
SERVSIEALNKE are not the production LNKLST data sets. These data sets must be APF authorized.

• Define and verify how ICSF is to be restarted after termination. The following methods can be used to
restart ICSF:

– Use z/OS Automatic Restart Manager (ARM) to restart ICSF. Note: Message IXC812I 'JOBNAME
jobname, ELEMENT elementname FAILED. THE ELEMENT WAS RESTARTED text' is issued indicating
ICSF was restarted and does not indicate a failure of dynamic service update. For more information
about subscribing to ARM, see “ARM policy” on page 100.

132 z/OS: z/OS ICSF System Programmer's Guide

– Automatically restart ICSF after receiving message CSFM401I 'CRYPTOGRAPHY - SERVICES ARE NO
LONGER AVAILABLE.' Note that there may be a delay between when the message is issued and when
the address space is fully terminated. This may require a delay in message automation to ensure the
ICSF address space is fully terminated.

– Manually restart ICSF after receiving message CSFM401I 'CRYPTOGRAPHY - SERVICES ARE NO
LONGER AVAILABLE.'

Steps to initiate dynamic service update
Complete the following steps to initiate a dynamic service update. If running in a sysplex environment,
these steps apply to each system that you want to apply dynamic update services.

1. Update the ICSF installation options data set and set the following keywords:

SERVSCSFMOD0(dsn,volser)
SERVSIEALNKE(dsn,volser)
SERVICELIBS(YES)

SERVSCSFMOD0(dsn[,volser])
The SERVSCSFMOD0 keyword specifies the service data set containing the SCSFMOD0 service. If
the SERVSCSFMOD0 option is not specified, the default is to use the code from LNKLST.

SERVSIEALNKE(dsn[,volser])
The SERVSIEALNKE keyword specifies the service data set containing the SIEALNKE service. If
the SERVSIEALNKE option is not specified, the default is to use the code from LNKLST.

SERVICELIBS(YES | NO)
The SERVICELIBS keyword is used to control whether service data set information is used. If
SERVICELIBS(YES), ICSF uses service data sets. If SERVICELIBS(NO), ICSF uses LNKLST. If the
SERVICELIBS option is not specified, the default is SERVICELIBS(NO).

2. Refresh the ICSF installation options data set to update or validate the SERVSCSFMOD0 and
SERVSIEALNKE keyword values by issuing the following console command:

SETICSF OPT,REFRESH

This step verifies that there are no syntax errors in the ICSF installation options data set and also
validates that the service data sets are correctly defined and accessible. If the refresh is successful,
SERVSCSFMOD0 and SERVSIEALNKE values are saved by ICSF for later use during a dynamic service
update.

Note: Active ICSF is not affected by this change.

If running in a sysplex environment with multiple systems in need of the same service update, issue
the SETICSF OPT,REFRESH command on all systems requiring service.

3. After the service data set have been defined on all the systems, issue the DISPLAY ICSF,
SERVICELIBS,SYSPLEX=Y command.

Examine the output to verify that all systems requiring the service have the correct service data sets
defined.

D ICSF,SERVICELIBS,SYSPLEX=Y
HCR77D0 SCSFMOD0 CURRENT VOLSER
SYS1 LNKLST
SYS2 LNKLST
SYS3 SERV1.SCSFMOD0 CSFVO1
HCR77D0 SCSFMOD0 NEXT
SYS1 SYS1.SRV1 SRVDR1
SYS2 SYS1.SRV1 SRVDR1
SYS3 SERV1.SCSFMOD0 SRVDR1
HCR77D0 SIEALNKE CURRENT VOLSER
SYS1 LNKLST
SYS2 LNKLST
SYS3 SERV1.SIEALNKE CSFVO1
HCR77D0 SIEALNKE NEXT
SYS1 SYS1.SRV1 SRVDR1

Chapter 4. Operating ICSF 133

SYS2 SYS1.SRV1 SRVDR1
SYS3 SERV1.SIEALNKE CSFVO1

In this example, SYS3 is using identical service data sets. This might have occurred from either
having the service options specified at initialization in the ICSF installation options data set or after
completing a dynamic service update using the SETICSF PAUSE command. The other two systems
(SYS1 and SYS2) are pointing to different service data sets and are currently running using the code
from LNKLST. When they are restarted, they will be running with the code from SYS1.SRV1. If the
service was only located in the SYS3 data set, the other systems would need to update their ICSF
installation options data set and issue the SETICSF OPT,REFRESH command to point to the same
data set.

4. Activate dynamic update service by issuing the following console command:

SETICSF PAUSE

Note: It is best to issue the SETICSF PAUSE command on one system in a sysplex at a time.

ICSF allows current requests to finish and pauses incoming requests. For current requests, ICSF
allows requests to continue processing as long as requests are completing. Once the number of
requests that are active is the same for greater than 10 seconds, ICSF terminates and fails the in-
progress requests.

5. Once there are no active requests in ICSF, ICSF begins termination. Message CSFM401I
'CRYPTOGRAPHY - SERVICES ARE NO LONGER AVAILABLE' is issued prior to ICSF address space
termination.

6. ICSF must be restarted via ARM policy, customer automation, or manually. If automation is being
used, no actions are needed. If manually restarting, ICSF must be started now. ICSF utilizes any
active service data set at this time.

7. ICSF completes initialization and resumes all paused requests. Normal ICSF processing resumes.
8. Upon completion of the dynamic update service, CSFM694I is issued:

CSFM694I ICSF SERVICE UPDATE COMPLETED. CLEANUP=cleanup_time
RESTART=restart_time REINIT=reinit_time CODE DATE OLD=old_date
NEW=new_date

cleanup_time
How long it took in seconds for ICSF to finish updating the existing service requests, write any
pending SMF records, clean up the address space, and to terminate.

restart_time
How long it took in seconds for the address space termination to complete and for automation to
restart ICSF.

reinit_time
How long it took in seconds for ICSF to complete initialization after starting back up.

The sum of these three values is the amount of time the dynamic service update took. This is the
maximum amount of time in which applications were paused. If this time interval is likely to cause
application timeouts, consider the following ways to reduce the time.
cleanup_time

• Choose a time for the SETICSF PAUSE command when the workload is at the lowest point
because the fewer active calls to ICSF is best.

• ICSF writes SMF records for key usage and statistics. Turn off these activities via the SETICSF
operator command before issuing the SETICSF PAUSE command to eliminate the writing of SMF
records.

restart_time

• Use either z/OS Automatic Restart Manager (ARM) or automation to restart ICSF. Manual restart
of ICSF will likely introduce additional delay. To use ARM to restart ICSF, see “ARM policy” on
page 100.

134 z/OS: z/OS ICSF System Programmer's Guide

reinit_time

• The largest contributor to the reinitialization time is most likely the time it takes to load the
CKDS into storage. Eliminating old, unused keys from the CKDS helps reduce this time. Examine
console messages like message CSFM653I 'kds LOADED num_record RECORDS WITH
AVERAGE SIZE average_size' to learn how long it takes for the CKDS to be loaded.

9. To verify that dynamic service update was activated, see “Verifying dynamic service update” on page
135.

10. To permanently add the dynamic service update, update your LNKLST and remove the service options
from the ICSF installation options data set.

Verifying dynamic service update
Steps to verify that dynamic service update was activated:

1. Message CSFM716I 'ICSF HAS BEEN INITIALIZED WITH location FROM location_info' indicates which
data set has been used for ICSF initialization.

2. Issue the DISPLAY ICSF,SERVICELIBS[,SYSPLEX=YES] command to verify that the 'current' and 'next'
values for this LPAR now match.

Deactivating dynamic service update
If you no longer want to use the service data sets (either because LNKLST has been updated with dynamic
service update or dynamic service update is not functioning or no longer needed), dynamic service update
can be removed in one of two ways:

1. For an active ICSF:

a. Update the ICSF installation options data set with the following option:

SERVICELIBS(NO)

b. Refresh the options data set to update SERVICELIBS by issuing the following console command:

SETICSF OPT,REFRESH

c. Revert to original service by issuing the following console command:

SETICSF PAUSE

ICSF runs a dynamic service update and at ICSF initialization, ICSF returns to using LNKLST.
2. Set SERVICELIBS(NO) in the ICSF installation options data set, hard stop ICSF, and then start ICSF.

ICSF initializes using LNKLST.

Performance considerations for using installation options
You specify installation options in the installation options data set. The CHECKAUTH installation option
provides additional security checking, but affects performance.

In ICSF, the Security Server (RACF) always checks non-Supervisor State callers. The CHECKAUTH option
allows you to specify whether CSF performs access control checking of Supervisor State and System Key
callers. Specify CHECKAUTH(NO) if you do not want CSF to check Supervisor State and System Key
callers. Specify CHECKAUTH(YES) if you want CSF to check Supervisor State callers. Checking Supervisor
State and System Key callers significantly affects performance.

The SYSPLEXCKDS, SYSPLEXPKDS and SYSPLEXTKDS options specify whether sysplex-wide data
consistency for the CKDS, PKDS, and TKDS is desired. For a description of the subkeywords, see
“Parameters in the installation options data set” on page 33.

Chapter 4. Operating ICSF 135

The RNGCACHE option specifies whether ICSF should maintain a cache of random numbers for services
that return or use random numbers. Specifying RNGCACHE(NO) turns off this caching which will decrease
performance for services that use random numbers.

Dispatching priority of ICSF
To avoid performance problems, the dispatching priority of ICSF should be set at least as high as that of
the highest task using ICSF.

VTAM session-level encryption
ICSF supports VTAM session-level encryption. VTAM session-level encryption provides protection for
messages within SNA sessions, that is, between pairs of logical units that support their respective end
users. When this method of protection is in effect, data is enciphered by the originating logical unit and
deciphered only by the destination logical unit. Thus, the data never appears in the clear while passing
through the network.

ICSF places no restrictions on the addressing mode of calling programs. In particular, when VTAM
session-level encryption is used with ICSF, VTAM can use storage greater than 16 megabytes.

System SSL encryption
ICSF supports System SSL encryption on all servers. A cryptographic feature is required. For more
information, For more information, see z/OS Cryptographic Services System SSL Programming.

Access method services cryptographic option
In compatibility mode, ICSF supports the Access Method Services Cryptographic Option. The option
enables the user of the Access Method Services REPRO command to use the Data Encryption Algorithm to
encipher data.

The Access Method Services user can use REPRO to encipher data that is written to a data set, and then
store the enciphered data set offline. When desired, you can bring the enciphered data set back online,
and use REPRO to decipher the enciphered data. You can decipher the data either on the host processor
on which it was enciphered, or on another host processor that contains the Access Method Services
Cryptographic Option and the same cryptographic key that was used to encipher the data. You can either
use ICSF to create the cryptographic keys, or use keys that the Access Method Services user supplies.

With the exception of catalogs, all data set organizations that are supported for input by REPRO are
eligible as input for enciphering. Similarly, with the exception of catalogs, all data set organizations
supported for output by REPRO are eligible as output for deciphering. The resulting enciphered data sets
are always sequentially organized (SAM or VSAM entry-sequenced data sets).

See Appendix E, “Using AMS REPRO encryption,” on page 433 for more information in using this method.

Remote key loading
The process of remote key loading is loading DES keys to automated teller machines (ATMs) from a
central administrative site. Because a new ATM has none of the bank's keys installed, getting the first key
securely loaded is currently done manually by loading the first key-encrypting key (KEK) in multiple
cleartext key parts. A new standard ANSI X9.24-2 defines the acceptable methods of doing this using
public key cryptographic techniques, which will allow banks to load the initial KEKs without having to send
anything to the ATMS. This method is quicker, more reliable and much less expensive.

Once an ATM is in operation, the bank can install new keys as needed by sending them enciphered under
a KEK it installs at a previous time. Cryptographic architecture in the ATMs is not Common Cryptographic
Architecture (CCA) and it is difficult to export CCA keys in a form understood by the ATM. Remote key
loading will make it easier to export keys to non-CCA systems without compromising security.

136 z/OS: z/OS ICSF System Programmer's Guide

In order to use ATM Remote Key Loading, TKE users will have to enable the access control points for
these functions:

• Trusted Block Create - API Keyword = Inactive
• Trusted Block Create - API Keyword = Active
• Public Key Import - Source Key Token = Trusted Block
• Public Key Import - Source Key Token = PKA96 Key Token
• Remote Key Export

Event recording
ICSF records certain ICSF events in the System Management Facilities (SMF) data set. ICSF also sends
messages that are generated during processing to the ICSF job log and consoles. The SMF recording and
messages help you detect problems and track events. This topic describes the events that ICSF records in
the SMF record and describes where ICSF sends certain messages.

These records can be used with RACF SMF type 80 record to audit use of the callable services and the
keys. The RACF type 80 records are extracted and formatted using the RACF SMF Unload Utility. See z/OS
Security Server RACF Auditor's Guide for information on how to use this utility. For information about the
formatted SMF records see z/OS Security Server RACF Macros and Interfaces.

System Management Facilities (SMF) recording
ICSF uses SMF record type 82 to record certain ICSF events. Record type 82 contains:

• A fixed header / self-defining section: This section contains the common SMF record headers fields and
the triplet fields (offset/length/number), if applicable, that locate the other sections on the record.

• A ICSF event specific (subtype) section: Each subtype contains information about the event that caused
ICSF to write to the SMF record. For subtypes that log state changes, the SMF record will contain
additional auditing sections.

• An auditing header section: This section is present in the record for subtypes that log state changes. It
describes the number and overall length of the auditing sections that follow.

• A server user section and, optionally, an end user section: If both sections are present, they can appear
in either order.

You can map record type 82 by using the CSFSMF82 macro.

ICSF records information in the SMF data set when these events occur:

• ICSF starts or an options refresh.
• An operational key is imported into the CKDS.
• The in-storage CKDS is refreshed.
• A dynamic change is made to a record in the CKDS.
• A dynamic change is made to a record in the PKDS.
• You use the ICSF panels to load master keys on a coprocessor.
• An RSA retained key is created or deleted.
• The TKE workstation issues a coprocessor command request or receives a reply response from a

coprocessor.
• A cryptographic processor is configured online or offline.
• ICSF records processing times for coprocessors and accelerators.
• ICSF joins or leaves the ICSF sysplex group.
• A trusted block is created or activated.
• A dynamic change is made to a record in the TKDS.
• Duplicate tokens were detected in a key data set.

Chapter 4. Operating ICSF 137

• The in-storage PKDS is refreshed.
• Key store policy checking detects the unauthorized use of a key token.
• Key store policy PKA key extensions checking detects the unauthorized use of a key.
• A secure symmetric key token is used for CPACF encryption.
• The TKE workstation sends an audit record to ICSF.
• Key store policy checking detects an attempt to use an archived or inactive KDS record.
• Cryptographic usage statistics are recorded.
• Compliance warning event information is recorded.
• Key life cycle events are recorded.

Each of these events causes ICSF to record information in a separate subtype in the SMF record.

Recording and Formatting type 82 SMF Records in a Report: Sample jobs are available (in SYS1.SAMPLIB)
to assist in the recording and formatting of type 82 SMF data:

• CSFSMFJ - JCL that executes the code to dump and format SMF type 82 records for ICSF. Before
executing the JCL, you need to make modifications to the JCL (see the prologue in the sample for
specific instructions). After the JCL has been modified, terminate SMF recording of the currently active
dump dataset (by issuing I SMF) to allow for the unloading of SMF records. After SMF recording has
been terminated, execute the JCL. The output goes into the held queue. This is an example of CSFSMFJ.

//CSFSMFJ JOB <JOB CARD PARAMETERS>
//**
//* LICENSED MATERIALS - PROPERTY OF IBM *
//* (C) COPYRIGHT IBM CORP. 2002 *
//* *
//* This JCL reads Type 82 SMF records and formats them in a report.*
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Change the DUMPIN DSN=hlq.smfdata.input to be the name of *
//* the dataset where you currently have SMF data being *
//* recorded. *
//* 3) Change the STEPLIB VOL=SER=ttttt1 and VOL=SER=ttttt2 to *
//* be the volumes where these sort datasets reside. *
//* 4) Change the SYSPROC DSN=hlq.rexx.dataset to be the name of *
//* the dataset where you have placed the CSFSMFR REXX sample. *
//* *
//* Prior to executing this job, you need to terminate SMF *
//* recording of the currently active dump dataset for allow the *
//* unload of SMF records. *
//* *
//**
//*
//*--*
//* UNLOAD SMF 82 RECORDS FROM VSAM TO VBS *
//*--*
//SMFDMP EXEC PGM=IFASMFDP
//DUMPIN DD DISP=SHR,DSN=hlq.smfdata.input
//DUMPOUT DD DISP=(NEW,PASS),DSN=&&VBS,UNIT=3390,
// SPACE=(CYL,(1,1)),DCB=(LRECL=32760,RECFM=VBS,BLKSIZE=4096)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 INDD(DUMPIN,OPTIONS(DUMP))
 OUTDD(DUMPOUT,TYPE(82))
//*
//*--*
//* COPY VBS TO SHORTER VB AND SORT ON DATE/TIME *
//*--*
//COPYSORT EXEC PGM=SORT,REGION=6000K
//STEPLIB DD DISP=SHR,DSN=SYS1.SORTLPA,VOL=SER=ttttt1,UNIT=3390
// DD DISP=SHR,DSN=SYS1.SICELINK,VOL=SER=ttttt2,UNIT=3390
//SYSOUT DD SYSOUT=*
//SORTWK01 DD UNIT=3390,SPACE=(CYL,10)
//SORTIN DD DISP=(OLD,DELETE),DSN=&&VBS
//SORTOUT DD DISP=(NEW,PASS),DSN=&&VB,UNIT=3390,
// SPACE=(CYL,(1,1)),DCB=(LRECL=3000,RECFM=VB)
//SYSIN DD *

138 z/OS: z/OS ICSF System Programmer's Guide

 SORT FIELDS=(11,4,A,7,4,A),FORMAT=BI,SIZE=E4000
//*
//*--*
//* FORMAT TYPE 82 RECORDS *
//*--*
//FMT EXEC PGM=IKJEFT01,REGION=5128K,DYNAMNBR=100
//SYSPROC DD DISP=SHR,DSN=hlq.rexx.dataset
//SYSTSPRT DD SYSOUT=*
//INDD DD DISP=(OLD,DELETE),DSN=&&VB
//OUTDD DD SYSOUT=*
//SYSTSIN DD *
 %CSFSMFR

• CSFSMFR - An exec that formats the SMF type 82 records into a readable report. Use the report from
the ICSF system with the latest FMID running on your sysplex.

ICSF Initialization (Subtype 1)
When ICSF starts, ICSF writes to subtype 1 after initialization is completed. Subtype 1 describes the
values of installation options that are specified in the installation options data set.

Subtype 1 contains this information:

• Special secure mode (SSM) option
• Security Server (RACF) checking of Supervisor State and System Key callers (CHECKAUTH) option
• Compatibility mode with CUSP or PCF (COMPAT) option
• Cryptographic domain number (DOMAIN) option
• CKDS name (CKDSN) option
• Maximum length for data in a callable service (MAXLEN) option

Beginning with z/OS V1 R2, the MAXLEN parameter may still be specified in the options data set, but
only the maximum value limit will be enforced (2147483647). If a value greater than this is specified,
an error will result and ICSF will not start.

• User parameter (USERPARM) option
• PKDS name (PKDSN) option
• TKDS name (TKDSN) option

SMF records for this subtype will also contain a server user audit section.

Operational Key Part Entry (Subtype 7)
ICSF writes to subtype 7 when key parts are entered using the TKE workstation and are processed using
the operational key entry ICSF panels. Subtype 7 contains this information:

• The ENC-ZERO verification pattern of the completed key
• A bit indicating whether the verification pattern is valid
• The cryptographic coprocessor domain number
• The cryptographic coprocessor number
• The name of the CKDS that contains the entry with the key part
• The label of the CKDS entry that contains the key part

SMF records for this subtype will also contain server user and end user audit sections.

CKDS Refresh (Subtype 8)
ICSF writes to subtype 8 when the in-storage CKDS is successfully refreshed. ICSF refreshes the in-
storage CKDS by reading a disk copy of a CKDS into storage. Subtype 8 contains this information:

• Name of the current in-storage CKDS that ICSF refreshes
• Name of the disk copy of the CKDS that ICSF read into storage to replace the current CKDS

Chapter 4. Operating ICSF 139

SMF records for this subtype will also contain server user and end user audit sections.

Dynamic CKDS Update (Subtype 9)
ICSF writes to subtype 9 when an application uses the dynamic CKDS update or the KDS metadata write
services to write to the CKDS. ICSF writes to subtype 9 when the CKDS KEYS utility is used to update the
CKDS. Subtype 9 contains this information:

• Name of the changed CKDS
• An indication of the operation performed.
• The CKDS entry (which includes the label name and key type) that was changed

SMF records for this subtype will also contain server user and end user audit sections.

Dynamic PKDS Update (Subtype 13)
ICSF writes to subtype 13 when an application uses the dynamic PKDS update or the KDS metadata write
services to change the PKDS. ICSF writes to subtype 13 when the PKDS KEYS utility is used to update the
PKDS. Subtype 13 contains this information:

• The name of the changed PKDS
• An indication of the operation performed.
• The name of the changed entry in the PKDS

SMF records for this subtype will also contain server user and end user audit sections.

Cryptographic Coprocessor Clear Master Key Entry (Subtype 14)
ICSF writes to subtype 14 whenever you use ICSF panels to update AES-MK, DES-MK, ECC-MK, or RSA-
MK in the new master key register on a coprocessor. Subtype 14 contains this information:

• The master Key valid indicator
• The type of coprocessor
• The new master key verification pattern
• The key part verification pattern
• The cryptographic coprocessor processor number
• The cryptographic coprocessor serial number
• The cryptographic coprocessor domain index

SMF records for this subtype will also contain server user and end user audit sections.

Cryptographic Coprocessor Retained Key Create or Delete (Subtype 15)
ICSF writes to subtype 15 whenever you create or delete a retained private key in a coprocessor. Subtype
15 contains this information:

• The operation performed (created, deleted from coprocessor, deleted from PKDS)
• The type of coprocessor
• The retained key label
• The cryptographic coprocessor processor number
• The cryptographic coprocessor serial number
• The domain index

SMF records for this subtype will also contain server user and end user audit sections.

140 z/OS: z/OS ICSF System Programmer's Guide

Cryptographic Coprocessor TKE Command Request or Reply (Subtype 16)
ICSF writes to subtype 16 whenever a TKE workstation either issues a command request to, or receives a
reply response from a coprocessor. Subtype 16 contains this information:

• The indicator for request or reply
• The type of coprocessor
• The cryptographic coprocessor processor number
• The cryptographic coprocessor serial number
• The cryptographic coprocessor domain index
• The request command block or reply response block length
• The request command data block or reply response data block length
• The request or reply CPRB
• The length of the fixed audit data
• The number of relocate sections
• The function id
• The function return code
• The function description - describes the function id.

SMF records for this subtype will also contain server user and end user audit sections.

Cryptographic Coprocessor Configuration (Subtype 18)
ICSF writes subtype 18 when the configuration of a coprocessor or accelerator changes. Subtype 18
contains this information:

• The operation performed (coprocessor brought online, taken offline, had a compliance change).
• The coprocessor number.
• The coprocessor serial number, or accelerator number.

PCI X Cryptographic Coprocessor Timing (Subtype 19)
ICSF periodically records processing times for PCIXCC operations in subtype 19. Subtype 19 contains this
information:

• The time immediately before the operation begins
• The time immediately after the operation ends
• The time immediately after the results of the operation have been communicated to the caller address

space
• The number of processes waiting to submit work to the same PCIXCC, domain, and reference slot used

by this operation
• The function code for this operation
• The PCIXCC processor number
• The PCIXCC serial number
• The PCIXCC domain
• A reference number that identifies an internal ICSF queue element

Cryptographic Coprocessor Timing (Subtype 20)
ICSF periodically records processing times for coprocessor or accelerator operations in subtype 20.
Subtype 20 contains this information:

• The device type

Chapter 4. Operating ICSF 141

• The time immediately before the operation begins
• The time immediately after the operation ends
• The time immediately after the results of the operation have been communicated to the caller address

space
• The number of processes waiting to submit work to the same coprocessor, domain, and reference slot

used by this operation
• The function code for this operation
• The coprocessor or accelerator processor number
• The coprocessor serial number
• The coprocessor or accelerator domain
• A reference number that identifies an internal ICSF queue element

ICSF Sysplex Group (Subtype 21)
ICSF writes subtype 21 when ICSF joins or leaves the ICSF sysplex group. Subtype 21 contains this
information:

• The name of the ICSF sysplex group
• The name of the sysplex member
• An indication of whether the member joined or left the sysplex group
• An indication of whether the join or leave was due to normal initialization/termination processing
• An indication of whether the leave was due to error recovery processing
• The time of the join or leave
• The name of the active CKDS

Trusted Block Create (Subtype 22)
ICSF writes subtype 22 when the Trusted Block Create callable services are invoked. Subtype 22 contains
this information:

• Type of call, Active or Inactive
• If a Public Key Section was present in the Trusted Block Token
• ASID of the Caller
• If Input Trusted Block Token is in the PKDS, save it's Label
• If Output Trusted Block Token is in the PKDS, save it's Label
• If the Transport Key Token is in the CKDS, save it's Label

SMF records for this subtype will also contain server user and end user audit sections.

Token Data Set (TKDS) (Subtype 23)
ICSF writes subtype 23 when the Token Data Set (TKDS) record is updated using the Token Data Set
callable services. ICSF writes to subtype 23 when the PKCS11 TOKEN utility is used to update an object in
the TKDS. Subtype 23 contains this information:

• The name of the changed TKDS
• An indication of the operation performed
• The name of the changed entry in the TKDS

SMF records for this subtype will also contain server user and end user audit sections.

142 z/OS: z/OS ICSF System Programmer's Guide

Duplicate Key Tokens (Subtype 24)
ICSF writes subtype 24 when the security administrator has indicated that duplicate key tokens must be
identified. Subtype 24 contains this information:

• The data set name
• The number of key labels
• The key labels

Key Store Policy Key Token Authorization Checking (Subtype 25)
ICSF writes subtype 25 when a callable service is called and the key token authorization checking detects
the key token is not authorized to the caller. The key token is a duplicate of one or more records in the key
data set. The check of the CSFKEYS profiles of the record with the key token found the user was
unauthorized to use the records. Subtype 25 contains this information:

• Key store and list information.
• The number of key labels.
• The unauthorized duplicate key label and key type.

SMF records for this subtype will also contain server user and end user audit sections.

PKDS Refresh (Subtype 26)
ICSF writes to subtype 26 when the in-storage PKDS is successfully refreshed. ICSF refreshes the in-
storage PKDS by reading a disk copy of a PKDS into storage. Subtype 26 contains this information:

• Name of the current in-storage PKDS that ICSF refreshes
• Name of the disk copy of the PKDS that ICSF read into storage to replace the current PKDS

SMF records for this subtype will also contain server user and end user audit sections.

Key Store Policy PKA Key Management Extensions (Subtype 27)
When PKA Key Management Extensions are enabled, ICSF writes to subtype 27 to record operational and
error information related to PKA Key Management Extensions. A subtype 27 record is written:

• when a CSF.PKAEXTNS.ENABLE or CSF.PKAEXTNS.ENABLE.WARNONLY profile in the XFACILIT class
uses the APPLDATA field to specify a trusted certificate repository, an SMF record is cut to indicate if the
trusted certificate repository was successfully changed, or whether there was an error. The APPLDATA
field and the repository it specifies will be checked at startup and whenever the XFACILIT class is
RACLISTed. ICSF will write a subtype 27 record if the certificate repository is changed, or if there is an
error. In this case, subtype 27 will indicate if:

– the trusted certificate repository was changed
– the specified trusted certificate repository is empty
– an error was detected while extracting the APPLDATA
– the specified repository was not found
– one or more certificates could not be parsed

• when an application calls a service attempting to use a key in a way that is not allowed by the ICSF
segment specifications within the CSFKEYS or XCSFKEY profile that covers the key. The SMF record will
be written at the completion of the callable service, which, depending on whether PKA Key Management
Extensions had been enabled in warning or fail mode, may or may not allow the requested operation on
the key. Subtype 27 contains this information. In this case, subtype 27 will indicate if:

– an asymmetric key may not be used for the requested function
– a symmetric key cannot be exported by the provided asymmetric key

SMF records for this subtype will also contain server user and end user audit sections.

Chapter 4. Operating ICSF 143

High Performance Encrypted Key (Subtype 28)
Symmetric Key Encipher (CSNBSYE, CSNBSYE1, CSNESYE and CSNESYE1), Symmetric Key Decipher
(CSNBSYD, CSNBSYD1, CSNESYD and CSNESYD1), Field Level Encipher (CSNBFLE, CSNEFLE), and Field
Level Decipher (CSNBFLD, CSNEFLD) callable services exploit CP Assist for Cryptographic Functions
(CPACF) for improved key management performance. An encrypted DATA key stored in the CKDS can be
used in these services, but only when SYMCPACFWRAP(YES) is specified in the ICSF segment of the
CSFKEYS class profile that covers the key. For Field Level Encipher and Field Level Decipher, an encrypted
DATA key that is not stored in the CKDS can be used, but only when SYMCPACFWRAP(YES) is specified in
the ICSF segment of the CSF-PROTECTED-KEY-TOKEN CSFKEYS class profile. ICSF writes to subtype 28
at the completion of functions that attempt to wrap an encrypted key under the CPACF wrapping key.
Subtype 28 will indicate if the rewrapping operation is:

• Permitted for this symmetric key
• Not permitted for this symmetric key

SMF records for this subtype will also contain server user and end user audit sections.

For more information about protected-key CPACF, see z/OS Cryptographic Services ICSF Overview.

TKE Workstation Audit Record (Subtype 29)
If you have the optional TKE Workstation, you can use the TKE Audit Record Upload Configuration Utility
to send Trusted Key Entry workstation security audit records to a Z host, where they will be saved in the
z/OS System Management Facilities (SMF) dataset. Each TKE security audit record is stored in the SMF
dataset as a type 82 subtype 29 record. For more information on the TKE Audit Record Upload
Configuration Utility, refer to the z/OS Cryptographic Services ICSF TKE Workstation User's Guide.

Key Store Policy Archived and Inactive Checking (Subtype 30)
ICSF writes subtype 30 when a callable service attempts to use an archived record. ICSF writes subtype
30 when a callable service attempts to use an inactive (outside the key material validity dates) record.
Subtype 30 contains this information:

• The reference activity.
• Key data set name.
• The entry that was referenced.

SMF records for this subtype will also contain server user and end user audit sections.

Cryptographic usage statistics (Subtype 31)
ICSF writes subtype 31 whenever cryptographic usage tracking is enabled. Each ICSF instance can track
the usage of cryptographic engines (ENG), cryptographic services (SRV), and cryptographic algorithms
(ALG) for that LPAR. Subtype 31 contains information about the cryptographic user's HOME address space
job ID, SECONDARY address space job name, HOME address space user ID, HOME task level user ID, and
ASID. See the STATS option in “Parameters in the installation options data set” on page 33 for more
details about enabling these events.

CCA symmetric key lifecycle event (Subtype 40)
ICSF writes subtype 40 whenever a CCA symmetric key undergoes a lifecycle event. A lifecycle event is
any event that changes a key, the key's metadata, or the key's state. Examples of lifecycle events include
generating a key, updating a key, and a key becoming active. Subtype 40 contains information about the
event, information identifying the key, metadata about the key, and information identifying the user. See
the AUDITKEYLIFECKDS option in “Parameters in the installation options data set” on page 33 for more
details about enabling these events.

SMF records for this subtype will also contain server user and end user audit sections.

144 z/OS: z/OS ICSF System Programmer's Guide

CCA asymmetric key lifecycle event (Subtype 41)
ICSF writes subtype 41 whenever a CCA asymmetric key undergoes a lifecycle event. A lifecycle event is
any event which changes a key, the key's metadata, or the key's state. Examples of lifecycle events
include generating a key, updating a key, and a key becoming active. Subtype 41 contains information
about the event, information identifying the key, metadata about the key, and information identifying the
user. See the AUDITKEYLIFEPKDS option in “Parameters in the installation options data set” on page 33
for more details about enabling these events.

SMF records for this subtype will also contain server user and end user audit sections.

PKCS #11 key lifecycle event (Subtype 42)
ICSF writes subtype 42 whenever a PKCS #11 key undergoes a lifecycle event. A lifecycle event is any
event which changes a key, the key's metadata, or the key's state. Examples of lifecycle events include
generating a key, updating a key, and a key becoming active. Subtype 42 contains information about the
event, information identifying the key, metadata about the key, and information identifying the user. See
the AUDITKEYLIFETKDS option in “Parameters in the installation options data set” on page 33 for more
details about enabling these events.

SMF records for this subtype will also contain server user and end user audit sections.

Regional cryptographic server configuration (Subtype 43)
ICSF writes to subtype 43 when a regional cryptographic server is configured online or offline. Subtype 43
contains this information:

• The regional cryptographic server index.
• The regional cryptographic server serial number.
• The regional cryptographic server port number.
• The length of the regional cryptographic server host name.
• The regional cryptographic server host name.

SMF records for this subtype will also contain server user and end user audit sections.

CCA symmetric key usage event (Subtype 44)
ICSF writes subtype 44 whenever a CCA symmetric key is used. Subtype 44 contains information about
the event, information identifying the key, metadata about the key, and information identifying the user.
See the AUDITKEYUSGCKDS option in “Parameters in the installation options data set” on page 33 for
more details about enabling these events.

SMF records for this subtype will also contain server user and end user audit sections.

CCA asymmetric key usage event (Subtype 45)
ICSF writes subtype 45 whenever a CCA asymmetric key is used. Subtype 45 contains information about
the event, information identifying the key, metadata about the key, and information identifying the user.
See the AUDITKEYUSGPKDS option in “Parameters in the installation options data set” on page 33 for
more details about enabling these events.

SMF records for this subtype will also contain server user and end user audit sections.

PKCS #11 key usage event (Subtype 46)
ICSF writes subtype 46 whenever a PKCS #11 key is used. Subtype 46 contains information about the
event, information identifying the key, metadata about the key, and information identifying the user. See
the AUDITPKCS11USG option in “Parameters in the installation options data set” on page 33 for more
details about enabling these events.

SMF records for this subtype will also contain server user and end user audit sections.

Chapter 4. Operating ICSF 145

PKCS #11 no key usage event (Subtype 47)
ICSF writes subtype 47 whenever a supported PKCS #11 event does not involve a key or object. Subtype
47 contains information about the event and information identifying the user. See the AUDITPKCS11USG
option in “Parameters in the installation options data set” on page 33 for more details about enabling
these events.

SMF records for this subtype will also contain server user and end user audit sections.

Compliance warning event (Subtype 48)
ICSF writes subtype 48 for CCA compliance warning events. These events can assist when migrating
applications to a compliance standard. Subtype 48 contains the result of the operation, information
identifying any keys involved, metadata about the key or keys, and information identifying the user. See
the COMPLIANCEWARN option in “Parameters in the installation options data set” on page 33 for
information about enabling these events.

SMF records for this subtype will also contain server user and end user audit sections.

Message recording
ICSF writes messages to the job log, and to the security console and the operator console.

ICSF writes most of its messages to the job log. Messages that demand action from the master console
operator will display on the operator console, and messages related to system security will display on the
security console. Some of these console messages will appear only on the console, and some will also be
written to the job log. Messages that are not displayed on either the operator or security console are
written to the job log.

For a description of each ICSF message, see z/OS Cryptographic Services ICSF Messages.

Security considerations
You can provide enhanced security on ICSF by controlling access to resources and changing the values of
your keys periodically. This topic describes these aspects of security:

• Controlling access to utility programs - KGUP, CSFDUTIL
• Controlling access to the callable services
• Controlling access to cryptographic keys
• Controlling access to CCA key tokens
• Scheduling changes for cryptographic keys
• Controlling access to panel functions
• Controlling access to RACF SMF log records

Controlling the program environment
Some programs or applications, which use ICSF, require that the environment is program controlled. In a
program controlled environment, programs within the address space are defined to the Security Server
(RACF). Defining a program to RACF requires the program name and the name of the data set that
contains the program.

If there is not already an * or ** profile in PROGRAM class, you must define one using RDEFINE instead of
RALTER for the first command.

RALTER PROGRAM ** ADDMEM('CSF.SCSFMOD0'/volser/NOPADCHK)
RALTER PROGRAM ** ADDMEM('CSF.SCSFMOD1'/volser/NOPADCHK)
RALTER PROGRAM ** ADDMEM('CSF.SCSFSTUB'/volser/NOPADCHK)
RDEFINE PROGRAM CSF* ADDMEM('SYS1.SIEALNKE'/volser/NOPADCHK)
RDEFINE PROGRAM CSN* ADDMEM('SYS1.SIEALNKE'/volser/NOPADCHK)

The VOLSER specification is optional.

Security Considerations

146 z/OS: z/OS ICSF System Programmer's Guide

For more information, see z/OS Security Server RACF Security Administrator's Guide.

Controlling access to KGUP
Anyone running the key generator utility program can read and alter an unprotected cryptographic key
data set (CKDS). Therefore, only authorized users should have access to the key generator utility program.
To make it difficult for an unauthorized person to execute the key generator utility program, store the
program in an APF-authorized library that is protected by the Security Server (RACF). Additionally, a
security administrator can define a CSFKGUP profile in the CSFSERV class and permit or deny users
access to the utility.

Controlling access to CSFDUTIL
CSFDUTIL reads through a CKDS or PKDS and generates a report for duplicate secure key tokens. Only
authorized users should have permission to access the CKDS or PKDS datasets directly.

Controlling access to the callable services
Unauthorized persons should not perform the cryptographic or key management functions that the
callable services provide. The security administrator should be the only one able to access some services
like those used in managing keys. The security administrator can give access to some services, such as
enciphering and deciphering data, to persons who are authorized on the system.

You can use the Security Server (RACF) to control which users can use ICSF callable services. For
example, you can use the key export service to export any type of key. Your installation may want only the
security administrator to be able to use the key export function.

ICSF provides security exit points that you can use to control access to a callable service instead of
Security Server (RACF). For information about the security exit points, see “Security installation exits” on
page 189.

Your installation may want other users to just be able to export data keys, because sending encrypted
data between systems is a common function. The data key export callable service permits the export of
data keys only. Your security administrator can have access to the key export service and can use the
Security Server (RACF) to give other users access to the data key export service. For more information on
controlling who can use ICSF callable services, see z/OS Cryptographic Services ICSF Administrator's
Guide.

Access control points for specific functions may be enabled/disabled through the TKE workstation. See
the z/OS Cryptographic Services ICSF TKE Workstation User's Guide for additional information.

Controlling access to cryptographic keys
Besides the key generator utility program and services, your installation should also control access to the
cryptographic keys. First, it is highly recommended that you store cryptographic keys in data sets that are
protected by RACF or an equivalent product. You should limit access to authorized persons or
applications. Second, you can use RACF to control access to keys in the in-storage cryptographic key data
set. For more information on protecting cryptographic keys, see z/OS Cryptographic Services ICSF
Administrator's Guide.

When clear DES or AES keys are added to the CKDS, RACF-protect all clear keys by label name on all
systems sharing the CKDS.

ICSF also provides security exit points that you can use to control access to keys in the in-storage CKDS
and in the PKDS. For information about the security exit points, see “Security installation exits” on page
189.

Controlling access to secure key tokens
You and your installation have the option of controlling access to a secure tokens that have the same
token value and different key labels. To do this, define a key store policy. Key store policy are a system

Security Considerations

Chapter 4. Operating ICSF 147

wide setting, using RACF profiles to define the policy. Because key store policy makes use of additional
RACF checks, careful planning should occur before implementing the support.

For details on key store policy, see z/OS Cryptographic Services ICSF Administrator's Guide.

Scheduling changes for cryptographic keys
You should periodically change the value of cryptographic keys to reduce the possibility of exposing a key
value. It is recommended that you change the master keys at least every 12 months.

The security administrator can use the key generator utility program (KGUP) to change the cryptographic
keys. KGUP updates keys in the disk copy of the cryptographic key data set while the callable services
access keys in the in-storage copy of the cryptographic key data set. Therefore, you can change the keys
without affecting cryptographic operations. For more information on using KGUP, refer to z/OS
Cryptographic Services ICSF Administrator's Guide.

Controlling access to administrative panel functions
You can perform many ICSF administration functions by using the TSO panels. RACF can protect access to
these functions. The functions include:

• Refreshing the CKDS or PKDS
• Setting the master keys
• Changing the master keys
• Clear key entry (access can also be controlled through the TKE workstation, domain controls)
• Pass phrase MK/KDS initialization
• Administrative control functions (enabling and disabling dynamic CKDS access, PKA callable services,

and dynamic PKDS access)

These functions are treated the same way as callable services. To view and change system status, see
z/OS Cryptographic Services ICSF Administrator's Guide for more information.

Obtaining RACF SMF log records
For information on how to capture SMF log records for RACF access events, see z/OS Security Server RACF
Auditor's Guide and z/OS Security Server RACF Command Language Reference.

You can extract RACF log records from the SMF data set that can be correlated to the ICSF log records.
For more information on how to obtain RACF log records from the SMF data set, see z/OS Security Server
RACF Auditor's Guide.

Debugging aids
This topic contains information you can use when diagnosing problems on ICSF. This topic describes:

• Component trace
• Abnormal endings
• Using the IPCS formatting routine
• Detecting ICSF serialization contention conditions

Component trace
ICSF component trace is on all of the time. How much is traced depends on the CTRACE options that are
specified in the CTICSFxx parmlib member.

ICSF Component Trace is configured by using a PARMLIB member. A default PARMLIB member,
CTICSF00, is shipped and installed with ICSF starting at the ICSF FMID HCR77A1 release level. This
PARMLIB member can be specified with the CTRACE option within the ICSF options data set.

Security Considerations

148 z/OS: z/OS ICSF System Programmer's Guide

Optionally, this PARMLIB member can be copied and customized to a CTICSFxx PARMLIB data set, where
xx is a value that is used to make a copy. The new CTICSFxx PARMLIB member can then be specified at
ICSF startup time by using the CTRACE option within the ICSF options data set.

For more information on creating a CTICSFxx PARMLIB member, see “Creating an ICSF CTRACE
configuration data set” on page 25.

The TRACEENTRY option in the ICSF Options data set is deprecated. If this option is specified, it is
ignored and produces a CSFO0212 message.

ICSF Component Trace can also be dynamically updated by using the TRACE CT command. A CTICSFxx
PARMLIB member can be passed to the TRACE CT command. Specific ICSF Component Trace options can
also be specified through replies to the TRACE CT command on the operator console.

Following are examples of how to use the TRACE CT command to specify a CTICSFxx PARMLIB member
and individual command options.

• To configure ICSF CTRACE to use minimal tracing, use this TRACE OFF command:

TRACE CT,OFF,COMP=CSF

• To specify a new CTICSFxx PARMLIB member, issue this command:

TRACE CT,ON,COMP=CSF,PARM=CTICSFxx

• To specify that you want to trace ASID 0042, issue this command:

TRACE CT,ON,COMP=CSF

Follow the TRACE ON command with this reply:

R nn,ASID=(0042),END

• To specify that you want to trace JOBNAME MYJOB, issue this command:

TRACE CT,ON,COMP=CSF

Follow the TRACE ON command with this reply:

R nn,JOBNAME=(MYJOB),END

• To specify that you want to change the trace buffer size to 250K, issue this command:

TRACE CT,250K,COMP=CSF

Follow the TRACE command with this reply:

R nn,END

• To specify that you want to change the trace filtering to CARDIO, issue this command:

TRACE CT,ON,COMP=CSF

Follow the TRACE ON command with this reply:

R nn,OPTIONS=(CARDIO),END

• To display the current active trace options, issue this command:

DISPLAY TRACE,COMP=CSF

Abnormal endings
ICSF has an abnormal ending in these cases only:

Security Considerations

Chapter 4. Operating ICSF 149

• When an error occurs during ICSF initialization.
• When you specify FAIL(ICSF) in the callable service exit installation option.
• When the setting of a cryptographic domain index fails.

If an abnormal end occurs in any other cases, your application or unit of work ends; however, ICSF is still
available.

ICSF has an abnormal end code unique to ICSF. Errors specific to ICSF result in an abnormal end code of
X'18F' and a unique reason code. In general, all abnormal ends occurring within ICSF result in an
appropriate system dump, user dump, or LOGREC recording.

Review the reason code to see whether the abnormal end was an installation or user error. For a list of the
reason codes for abnormal end code X'18F', refer to z/OS MVS System Codes. If you cannot resolve the
problem, save the dump and contact the IBM Support Center.

IPCS formatting routine
When you look at a dump, you can format ICSF CTRACE entries or request some analysis functions.
CTRACE COMP(CSF) FULL

Formats the trace entries in the trace buffers within the dump or CTRACE captured to an external
writer.

This data is most likely to be used by ICSF service.

CTRACE COMP(CSF) OPTIONS((COUNTS))
Shows you which services are being used in the trace entries within the dump.

Sample output:

ICSF COUNTS FROM CTRACE:
SERVICE CALLS_FOUND = 00004349
FAILING SERVICES = 00000145
SERVICE #SUCCESS #FAILED
CSFTCTRC 00002106 00000145
CSFTCTRD 00002098 00000000

When you see that there are some service failures, you can request more details. If you want more
details about who is calling which services, you can use the IPCS statistics support that generates
SMF records.

CTRACE COMP(CSF) OPTIONS((FAILURES)) FULL
Sample output:

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------

S24 ICSF 00000001 11:49:57.925969 ICSF
 ASID H=0047 S=0047 TCB=007B96E8 MOD=CSFVCAPC SrvExit
 Stack=1EEFA010 Service=CSFTCTRC
 Return code = 00000008
 Reason code = 00000BCD

This sample output shows that ASID 47 called service CSFPTRC (CSFTCTRC is the internal ICSF
routine) and this request failed with return code 8 (application error) and reason code BCD:

BCD (3021)
The call to add a z/OS PKCS #11 token failed because the token already
exists in the TKDS data space or a request to add a z/OS PKCS #11 token
object failed because an object with the same handle already exists.

For more information about return codes, see z/OS Cryptographic Services ICSF Application
Programmer's Guide.

CTRACE COMP(CSF) OPTIONS((PERFC))
Pairs up start and end trace entries for requests to cryptographic coprocessors.

Security Considerations

150 z/OS: z/OS ICSF System Programmer's Guide

You can use the Interactive Problem Control System (IPCS) to format and display the certain ICSF control
blocks. The IPCS CBFORMAT command displays the control block's eye-catcher name, its location in the
address space, and its field names with their offsets. ICSF provides format routines for many of its control
blocks.

To see a complete list of the control blocks that can be formatted, you can browse
SYS1.PARMLIB(CSFIPCSP). This parmlib member provides the definition of all ICSF format and analysis
routines to IPCS.

You can also run IPCS command:

IPCSDATA CURRENT ACTIVE

This command provides an internal view of all format routines and exits defined to IPCS. Look for CSF to
find all the routines that are provided by ICSF.

Some ICSF control blocks can be formatted by symbol name. CSFCCVT, CSFCCVE, CSFMGST, and CSFENT
can be formatted with the IPCS command below when you specify the control block name as the symbol.

CBFORMAT symbolname

For example,

CBF CSFCCVT

This command locates the CCVT and formats it.

Most of the blocks that can be formatted must be located by the user:

CBF address STR(structurename)

For example,

CBF 7F60EF18 STR(CSFZTSKT)

For more information about using the CBFORMAT command, see z/OS MVS IPCS User's Guide.

VERBX
ICSF supports two verb exits:
VERBX CSFDATA 'options'

Use to specify a category of control blocks to format. If you specify VERBX CSFDATA without options,
the output shows the options that are valid:

VERBX CSFDATA
VERBX CSFDATA Output:

No valid options were specified on VERBX CSFDATA.
Valid options are CELL,CCPA,CCPS,CACB,CCPD,OCSV,OCSK,STACKS

Each option formats the control blocks that are relevant to the selected option:
CELL

Formats the ICSF storage management cell pool control blocks.
CCPA

Formats the control blocks that keep track of cryptographic coprocessors.
CCPS

Formats the control blocks for active requests to cryptographic coprocessors.
CACB

Formats the control blocks for I/O to CKDS, PKDS, and TKDS.
CCPD

Formats the main control block that is used to manage cryptographic coprocessors.

Security Considerations

Chapter 4. Operating ICSF 151

OCSV
Formats the control blocks for each Regional Cryptographic Server (RCS).

OCSK
Formats the control blocks for active RCS requests.

STACKS
Formats all the dynamic area stacks in ICSF.

VERBX CSF2 'options'
Use to populate the IPCS pointer panel with the control block definitions based on the selected
options. If you specify VERBX CSF2 without options, the output shows the options that are valid:

VERBX CSF2
VERBX CSF2 Output:

No valid options were specified on VERBX CSF2.
Valid options are BASE,CCMK,PLEX,CKDS,PKDS,TKDS,CARD,RCS,KU,STAT,WARN

The pointers that are added to the IPCS pointer panel:
BASE

Creates pointers for CCVT, CCVE, and TSKT. Also finds the active stack and related blocks.
CCMK

Creates pointers for any active or residual coordinated change master key requests.
PLEX

Creates pointers for sysplex-related control blocks. Combine with CKDS/PKDS/TKDS.
CKDS

Creates pointers relating to I/O for the KDS. Also, tailors PLEX.
PKDS

Creates pointers relating to I/O for the KDS. Also, tailors PLEX.
TKDS

Creates pointers relating to I/O for the KDS. Also, tailors PLEX.
CARD

Creates pointers for control blocks that are used to keep track of cryptographic coprocessors.
RCS

Creates pointers for control blocks that are used to keep track of regional cryptographic servers.
KU

Creates pointers for control blocks that are used for Key Usage tracking.
STAT

Creates pointers for control blocks that are used for Statistics monitoring.
WARN

Creates pointers for control blocks that are used for Warn mode processing.

At a minimum, when you are looking at a dump of ICSF, issue:

VERBX CSF2 'BASE'

Detecting ICSF serialization contention conditions
If a user task or address space holds an ENQ or latch for an extended period of time, it is likely hung and
needs to be canceled so that other work can obtain the ENQ or latch. Some applications might provide
controls or document procedures for addressing situations in which the application appears to be gating
the rest of the workload. The ICSF system programmer should consult the application's system
programmer or administrator regarding actions to take for or against the application. Such action might
include stopping or canceling the application.

ICSF requires Global Resource Serialization (GRS) ENQ resources to manage concurrent operations
involving the key data sets (CKDS, PKDS and TKDS), and the ICSF ENQ scheme has ICSF itself obtaining

Security Considerations

152 z/OS: z/OS ICSF System Programmer's Guide

any necessary data set ENQ, in a proxy fashion, on behalf of an application unit of work driving an ICSF
API request requiring an ENQ. ICSF also manages any set of extra, different application requests that
might be waiting for that same ENQ resource. For this reason, GRS always perceives only ICSF as a key
data set ENQ resource owner or waiter, and a DISPLAY GRS,CONTENTION command would not illustrate
key data set ENQ contention between two or more competing application requests within a single system
scope. For sysplex scope ENQ contention, DISPLAY GRS,CONTENTION would, without any internal
assistance, illustrate only ICSF itself as an ENQ holder or waiter, and would not reflect any client
application identity or information that is associated with ICSF's ENQ resource usage.

ICSF provides an internal capability to embellish the DISPLAY GRS command output to illustrate the ICSF
client applications for which ICSF is holding an ENQ resource, and on the general conditions involving
client waiters for an ENQ resource. This enhanced capability is transparently provided and requires no
additional ICSF or GRS installation or configuration action. The ICSF support to enhance the DISPLAY GRS
output is relevant on a DISPLAY GRS,CONTENTION command only if GRS can detect contention, which is
not the case when two or more ICSF client application requests are competing for the same ENQ resource
within a single system scope. The ICSF support is relevant on a DISPLAY GRS,RES=(qname-rname)
command whenever the ENQ resource specified in the qname-rname option is held, regardless of
whether contention exists. For this reason, the DISPLAY GRS,RES=() command version is recommended
as the reliable technique for obtaining information about ICSF key data set ENQ serialization conditions.
The DISPLAY GRS command syntax for the various ICSF key data set ENQ resources can be summarized
as follows:

Table 13. DISPLAY GRS command syntax ICSF key data set ENQ resources

This command: Displays ENQ information for the:

DISPLAY GRS,RES=(SYSZCKT.*) CKDS

DISPLAY GRS,RES=(SYSZPKT.*) PKDS

DISPLAY GRS,RES=(SYSZTKT.*) TKDS

Sample command output for the DISPLAY GRS,RES=(SYSZCKT.*) command:

ISG343I 12.01.33 GRS STATUS 360
S=SYSTEM SYSZCKT SYSZCKT
SYSNAME JOBNAME ASID TCBADDR EXC/SHR

SY1 CSFJM70 /APPL107 0040/0045 007D8E88 EXCLUSIVE

ADDITIONAL RESOURCE INFORMATION FROM: ICSF Managed ENQ
Owner: APPL107 TTOKEN: 000001200000000300000003007FF050 Waiters: 005

In this example, the display command result illustrates that ICSF on system SY1 started under jobname
CSFJM70 and executing in ASID 40, has obtained the CKDS ENQ resource exclusively on behalf of the
client application running with a jobname of APPL107 and executing in ASID 45. Furthermore, the
APPL107 application unit of work that caused ICSF to obtain this ENQ was the task that is identified by
task token 000001200000000300000003007FF050, and there are five more application requests on
system SY1 that are awaiting access to this ENQ resource.

The DISPLAY GRS,RES=() command must be executed on (or routed to) all of the systems within the
scope of a sysplex to obtain the comprehensive understanding of an ICSF key data set ENQ resource.

ICSF also exploits Global Resource Serialization (GRS) latches for serializing resources that are managed
within the scope of a single system. In the case of ICSF latches, whenever a client application request
requires an ICSF latch for serialization, the latch is obtained under the application's unit of work (not
proxied like the ENQ), and therefore, the DISPLAY GRS,CONTENTION command always illustrates the
application information for the current latch owner or owners.

The following operational steps are recommended when ICSF serialization contention is suspected as a
cause for a workload slowdown or hang:

1. Issue the DISPLAY GRS,CONTENTION command to illustrate sysplex scope contention on ICSF ENQ
serialization resources, or system level contention on ICSF latch serialization resources. If the

Security Considerations

Chapter 4. Operating ICSF 153

command result demonstrates latch contention, go to step 3. If the command result demonstrates
ICSF key data set ENQ contention and discloses the ENQ owner client application information, go to
step 3. If the command result does not demonstrate contention, or does not disclose the ENQ owner
client application information, proceed to the next step.

2. Issue the following commands as needed (depending on the key data sets you are using):

DISPLAY GRS,RES=(SYSZCKT.*)
DISPLAY GRS,RES=(SYSZPKT.*)Issue this command only if you are utilizing a PKDS
DISPLAY GRS,RES=(SYSZTKT.*)Issue this command only if you are utilizing a TKDS

The commands need to be executed either on all systems within a sysplex, or on the local system
where the ENQ resource is known to be owned. The command result should disclose the ENQ owner
client application information.

3. Initiate an action for or against the client application to end the unit of work on behalf of which ICSF
has obtained the ENQ resource. Such action might include stopping or canceling the application.

IPCS support for diagnosing contention issues in a dump
ICSF uses GRS ENQs and latches to serialize resources such as the CKDS, PKDS, and TKDS, and
serialization for the cryptographic coprocessors and regional cryptographic servers. Latches are heavily
used to serialize ICSF structures.

When you are looking at a dump, you can use the command ANALYZE. ANALYZE drives analyze exits in
IPCS. The GRS analyze exit and the ICSF analyze exit combine data to give you a picture of resources that
are in contention. If there is contention, the analyze command generates output. For example,

 CONTENTION EXCEPTION REPORT

JOBNAME=CSFALLR ASID=003A TCB=007D2430

JOBNAME=CSFALLR HOLDS THE FOLLOWING RESOURCE(S):

 RESOURCE #0002: There are 0020 units of work waiting for this resource
 NAME=SYSZTKT ENQ 7F5B7EC0 STR(DCTL)
 DATA=CSFMISDT task: 007D2430 requested ENQ

ICSF manages the ENQ SYSZTKT to serialize access to the TKDS. If you see this sort of problem, enter the
following command to load up the pointer panel with control blocks that are related to TKDS updates:

ip verbx csf2 'tkds plex'

ENF signals
ICSF sends an ENF signal to listeners in the following situations:

• Whenever ICSF is started.
• Whenever ICSF is terminating.
• Whenever a master key is changed.

Listener exit routines are invoked synchronously. Listeners of these signals should follow the guidelines
documented in z/OS MVS Programming: Authorized Assembler Services Guide on coding listener exit
routines. In particular, avoid any processing that may take an extended period of time to complete.

Security Considerations

154 z/OS: z/OS ICSF System Programmer's Guide

Table 14. ICSF ENF codes

Event code Description Qualifier Parameter list passed to the
user exit

Exit type /
Cross-system
capable

19 ICSF has
encountered a
change.

None A four-byte parameter area.
X'00000002'

ICSF has started and is ready
for requests.

X'00000003'
ICSF is terminating and will
no longer accept requests.

X'nn000004'

One or more master keys
(MKs) have been changed.
Byte nn indicates the MKs
that have been changed as
follows.

Bit Meaning when set:
0

DES MK changed.
1

AES MK changed.
2

RSA MK changed.
3

ECC MK changed.
4

P11 MK changed.
5

RCS MK changed.
6-7

Reserved.

EXIT or
SRBEXIT / NO

Security Considerations

Chapter 4. Operating ICSF 155

Security Considerations

156 z/OS: z/OS ICSF System Programmer's Guide

Chapter 5. Installation exits

Your installation can define exit routines to supplement the Integrated Cryptographic Service Facility
(ICSF), the key generator utility program (KGUP), and the PCF conversion program. Exit routines are
programs that programmers at your installation write to allow you to “customize” an application. Your
installation may need to perform specific functions with the data that your cryptographic application
manipulates. At various points in processing, ICSF, KGUP, and the PCF conversion program release
control to an exit routine.

Some common uses for installation exits include:

• Identifying and verifying users
• Accessing alternate data sets
• Manipulating input commands
• Manipulating output data

This topic describes the various types of exit points in ICSF and the functions that your exits can perform.

Attention: Only an experienced system programmer should use the ICSF installation exits. Writing
an exit routine and installing a new exit are tasks that require a thorough knowledge of system
programming in an OS/390 and z/OS environment. An unknowledgeable programmer who
attempts to write exit routines or to install new exit points, runs the risk of seriously degrading the
performance of your system and causing complete system failure.

Types of exits
ICSF provides several types of exit points:

• Exits that are called during initialization, stopping, and modification of ICSF itself, which are known as
the mainline exits

• Exits that are called from the services
• An exit called when a record is read from or written to a fixed length record CKDS.
• An exit called when you update the CKDS with a key that is entered through the key entry hardware or

during conversion program processing
• An exit called when records are retrieved from the in-storage CKDS
• Security exits that are called during initialization and stopping of ICSF, during a call to a service, and

when accessing a CKDS entry
• An exit called at various points during KGUP processing

These topics briefly describe the different types of exits available in ICSF.

Note: Although IBM no longer supplies security exit routines, the exit points still remain.

Mainline exits
You can supply three exits that are called during ICSF initialization. You can also define an exit routine to
run after an operator issues the STOP command and another exit to run after the MODIFY command.
Thus, mainline exits can run at these five different points:

• Initialization points

– Before ICSF initialization
– After ICSF reads and interprets the installation options
– Before the completion of ICSF initialization

• When an operator issues a STOP ICSF command

© Copyright IBM Corp. 2007, 2021 157

• When an operator issues a MODIFY ICSF command

You can use a mainline exit to alter values in the Cryptographic Communication Vector Table, to end ICSF,
or to change ICSF installation options. For more information about the mainline exits, see “Mainline
installation exits” on page 162.

Exits for the services
Each of the services in ICSF calls an exit before and after processing. z/OS Cryptographic Services ICSF
Application Programmer's Guide describes the services in greater detail.

You can use a service exit to change, augment, or replace processing or to bypass the IBM-supplied
processing for the service entirely. “Services installation exits” on page 170 gives further details about
exits for the services.

The PCF CKDS conversion program exit
The PCF conversion program changes a CKDS from PCF to ICSF CKDS format. See Chapter 8, “Migration
from PCF to z/OS ICSF,” on page 219 for more information about the conversion program.

ICSF provides three exit points for the same exit routine:

• During the initialization of the conversion program
• While the conversion program is processing individual records
• During the ending of the conversion program

See “PCF conversion program installation exit” on page 182 for more information about the conversion
program installation exit (CSFCONVX).

The single-record, read-write exit
Certain ICSF processes read records from or write records to the CKDS. These processes include running
a conversion program, refreshing and reenciphering the CKDS, and using the key entry hardware to enter
a key. When these processes read or write CKDS records, they call the exit. You can customize the
processing of a CKDS record read-write with the single-record, read-write exit (CSFSRRW). See “Single-
record, Read-write installation exit” on page 185 for more information about the single-record, read-write
exit.

Note: This exit is given control only for a fixed-length record CKDS. The exit is not given control for the
variable-length record format or KDSR format of the CKDS.

The cryptographic key data set entry retrieval exit
You can use certain services to manage keys on ICSF. A service can access a key in the in-storage CKDS
by specifying a key label. For more information about the services, see z/OS Cryptographic Services ICSF
Application Programmer's Guide.

When a service requests a record from the in-storage CKDS by label, ICSF calls the CKDS entry retrieval
exit. For instance, you can use this exit to perform a specific search of the installation data field in the
record. See “Cryptographic key data set entry retrieval installation exit” on page 180 for more information
about the CKDS entry retrieval exit.

Note: This exit is given control only for a fixed-length record CKDS. The exit does not work with the
variable-length record format of the CKDS.

Security exits
You can supply four different exits to control access to resources on ICSF. ICSF calls the security exits at
these points:

• During CSF initialization
• During CSF termination

158 z/OS: z/OS ICSF System Programmer's Guide

• When an application calls an ICSF service
• When an entry in the in-storage CKDS is accessed

See “Security installation exits” on page 189 for more information about the security exits.

The KGUP exit
You use KGUP to generate and maintain keys in the CKDS. KGUP creates key values that systems can use
in key exchanges. The ICSF administrator uses job control language to start KGUP and specifies
information to KGUP through the use of a control statement.

As opposed to the five different mainline exits, ICSF provides one exit for KGUP processing that is called
at four different points. ICSF calls the KGUP exits at these points:

• During KGUP initialization
• Before KGUP processes a key that is identified by a control statement
• Before KGUP updates the CKDS
• During KGUP termination

The KGUP exit receives a parameter that identifies the exit's calling point. Thus, the installation exit can
perform different functions at each of the calls.

You can use the KGUP exit to change key values, make a copy of a CKDS entry, or end KGUP. “Key
generator utility program installation exit” on page 193 gives a more detailed description of the KGUP
exit.

Entry and return specifications
All of the exits described in “Types of exits” on page 157 use standard linkage conventions on entry and
return from the exits.

Registers at entry
The mainline exits have these register contents on entry:
Register

Contents
0

Address of the exit parameter block (EXPB)
1

Address of a parameter list
2–12

Not applicable
13

Address of register save area
14

Return address
15

Entry point address

The service exits have these register contents on entry:
Register

Contents
0

Address of the exit parameter block (EXPB)
1

Address of a parameter list

Chapter 5. Installation exits 159

2–13
Not applicable

14
Return address

15
Entry point address

The CKDS entry retrieval installation exit has these register contents on entry:
Register

Contents
0

Not applicable
1

Address of a parameter list
2–12

Not applicable
13

Address of register save area
14

Return address
15

Entry point address

The conversion program, single-record, read-write, and KGUP exits have these register contents on entry:
Register

Contents
0

Not applicable
1

Address of a control block (CVXP, RWXP, or KGXP, depending on the exit)
2–12

Not applicable
13

Address of register save area
14

Return address
15

Entry point address

The particular control blocks that are passed through register 0 or register 1 are described with each exit.

Registers at return
Registers for all exits must contain the original contents on entry with the exception of register 15 which
must contain a valid return code. See each exit for a list of valid return codes. The registers should contain
this information on return.
Register

Contents
0–14

Same as entry contents
15

Valid return code

160 z/OS: z/OS ICSF System Programmer's Guide

Exits environment
ICSF calls different types of exits in distinct environments. The exits differ regarding the mode in which
they run and how they address data.

Mainline exits
ICSF mainline exits run in task mode in the ICSF address space. All the passed storage pointers specify
addresses in the ICSF address space and are not ALET qualified. There are essentially no restrictions on
the use of z/OS services for these exits.

Service exits
ICSF calls the service exits in cross memory mode after a space switch PC. The exits run in the ICSF
address space, which is the primary address space. The exits need to address parameters in the caller's
address space, which is the secondary address space. In general, user-passed parameters, including the
parameter list itself, are in the secondary address space. An exit that is running in access register (AR)
mode using an ALET of 1 can access these parameters. For information about cross memory mode and AR
mode, see z/OS MVS Programming: Extended Addressability Guide.

CKDS entry retrieval exit
The exit runs in cross memory mode. The addresses of the CKDS records that are used by the exit are
ALET-qualified. The exit receives both the current CKDS record address and the record's associated ALET
as parameters in the exit parameter list. The exit must run in AR mode, and must use the information
passed in the exit parameter list to access CKDS entries. For information about cross memory mode and
AR mode, see z/OS MVS Programming: Extended Addressability Guide.

KGUP, Conversion Programs, and Single-record, Read-write exits
The exits run in task mode in the caller's home address space. The exits do not run in cross memory mode
and are not passed ALET-qualified storage pointers. There are essentially no restrictions on the use of
z/OS services for these exits.

Security exits
The initialization and termination security exits run in task mode in the ICSF address space. The passed
storage pointers specify an address in the ICSF address space and are not ALET-qualified. There are
essentially no restrictions on the use of z/OS services for these exits.

ICSF calls the security service exit and the security keys exit in cross memory mode after a space switch
PC. The security service exit runs in the ICSF address space, which is the primary address space. The
security key exit runs in cross memory and AR mode.

Exit recovery
An ESTAE routine provides recovery for the mainline exits; the single-record, read-write exit; and the
security initialization and termination exits. If an exit ends abnormally, the ESTAE routine intercepts the
abnormal ending code and schedules a system dump. If the conversion program exit ends abnormally, the
conversion program ends abnormally. If the KGUP exit ends abnormally, KGUP also ends abnormally.
ESTAE routines provide recovery for the conversion program and KGUP.

The ICSF Functional Recovery Routine (FRR) provides recovery for the service exits, the CKDS entry
retrieval exit, and the security service and key exits. If an exit ends abnormally, the FRR intercepts the
abnormal ending code and schedules a system dump.

There are times during ICSF processing that ICSF suppresses dumps. For example, ICSF does not
schedule dumps when integrity checking user data. This action avoids the possibility of user errors that

Chapter 5. Installation exits 161

can severely affect system performance. However, ICSF does write a record to SYS1.LOGREC if the error
occurs.

When writing exits, you may also want to suppress dumps under certain circumstances. You can suppress
dumps by setting a bit on in the SPB. This bit, the SPBTERM bit, is the third bit of the flag byte at offset 18
in the SPB. An exit might want to suppress dumps whenever the exit writes user storage. The exit can turn
the bit on before the WRITE instruction and turn the bit off again after the instruction.

Mainline installation exits
ICSF begins when an operator issues a START command from the operator console. When ICSF issues
this command, the initialization process begins.

After ICSF starts, operators can issue the MODIFY or STOP commands. You can define installation exits to
customize ICSF at the initialization, stopping, and modification points.

Purpose and use of the exits
ICSF calls the mainline exits during the startup, modification, and shutdown stages. The exits allow your
installation to change the initialization options, issue special messages, and bypass operator commands.
This is a description of each point at which ICSF calls mainline exit routines.

CSFEXIT1
ICSF calls this exit after an operator issues a START command, but before any processing takes place. You
can use this exit to change the allocation of the installation options data set. If CSFEXIT1 changes the
DDNAME, it is treated as CSFPARM DD throughout ICSF initialization.

ICSF always calls the exit. If this exit does not exist, ICSF continues normal processing. If this exit exists,
ICSF starts it.

CSFEXIT2
ICSF calls this exit during the initialization process after the installation options data set is read and
interpreted. You can use this exit to change certain installation options.

CSFEXIT3
ICSF calls this exit just before ICSF initialization is complete. You can use this exit to issue commands to
start other cryptographic work.

CSFEXIT4
ICSF calls this exit when an operator issues a STOP command. You can use this exit to decide to allow or
disallow the STOP command.

CSFEXIT5
CSFEXIT5 receives the command input block (the string that is entered by the operator), so you can
customize CSFEXIT5 to perform any processing you require. ICSF calls this exit when an operator issues a
MODIFY command. ICSF provides the MODIFY command exit to allow each installation the flexibility of
defining its own command. ICSF does no processing when an operator uses the MODIFY command. The
MODIFY command is simply a call to CSFEXIT5.

Environment of the exits
The exits receive control with these characteristics:

• Supervisor state
• Key 0

162 z/OS: z/OS ICSF System Programmer's Guide

• APF-authorized
• TCB mode
• Address Space Control mode=access register mode
• AMODE(31) orAMODE(64)

The exit receives control in AMODE(64) if the service was invoked in AMODE(64); otherwise the exit
receives control in AMODE(31). If you have a callable service exit for a service which supports
invocation by an AMODE(64) caller, once HCR7720 is installed, you should recode your exit to be sure it
can handle being invoked in AMODE(64).

• RMODE(ANY)

The exits can change the characteristics during their processing. However, the exits must return to ICSF
with the same characteristics as on entry.

Installing the exits
Because ICSF calls CSFEXIT1 before any initialization occurs, the exit is not defined in the same way as
the other exits. For all the mainline exits, install the load module that contains the exit into an APF-
authorized library. ICSF uses this normal z/OS search order to locate the exit:

• Job pack area
• Steplib (if one exists)
• Link pack area (LPA)
• Link list (SYS1.LINKLIB concatenation)

You must define CSFEXIT2, CSFEXIT3, CSFEXIT4, and CSFEXIT5 in the installation options data set.
However, you must not define CSFEXIT1 in the installation options data set, and the load module name for
the exit must be CSFEXIT1.

To define the exits in the installation options data set, define the ICSF exit point name and load module
name on the EXIT keyword in the installation options data set. For information about the installation
options data set, see “Parameters in the installation options data set” on page 33. The EXIT keyword has
this syntax:

EXIT (ICSF exit point name, load module name, FAIL (options))

The ICSF exit point name portion of the keyword refers to the ICSF name for each exit, CSFEXIT2,
CSFEXIT3, CSFEXIT4, and CSFEXIT5. The load module name is the name of the load module that
contains the exit. The name can be any valid name your installation chooses. The FAIL portion of the EXIT
keyword specifies the action ICSF takes if the exit cannot be loaded. The valid FAIL options are:
NONE

Initialization continues even if exits cannot be loaded.
SERVICE

Initialization continues even if exits cannot be loaded.
EXIT

Initialization continues even if exits cannot be loaded.
ICSF

End ICSF if exits cannot be loaded.

You must specify a FAIL option. If you do not, ICSF returns an error message, abnormally ends, and
generates an SVC dump when attempting to load the exit.

Input
All mainline exits receive the address of an exit parameter block (EXPB) passed in register 0. Each exit
receives the address of an address list passed in register 1. Each address in the list points to a parameter.

Figure 3 on page 164 illustrates the contents of register 0 and EXPB for the mainline exits.

Chapter 5. Installation exits 163

Figure 3. EXPB control block for mainline exits

Both the mainline exits and the services exits receive the address of EXPB in register 0. Some of the fields
in EXPB are used only by the service exits and are reserved fields for the mainline exits.

The Exit Parameter Block
Table 15 on page 164 describes the contents of the exit parameter block.

Table 15. EXPB Control Block format for Mainline Exits

Offset (Dec)
Number of
Bytes Description

0 4 Name.

The name of the control block. This field contains the character string
EXPB.

4 2 Version.

The version of the control block. This field contains the character string
01.

6 2 Length.

The length of the control block. The value of this field is 40 in decimal.

8 4 Dynamic area address.

The address of a 400-byte area that the exit can use as a dynamic
area.

164 z/OS: z/OS ICSF System Programmer's Guide

Table 15. EXPB Control Block format for Mainline Exits (continued)

Offset (Dec)
Number of
Bytes Description

12 4 Exit area address.

The address of an 8-byte area the exits can use to communicate with
each other. ICSF does not check or change this field.

16 4 Exit communication area.

A character string that can be used for communication between the
exits. The field is initialized to zero before CSFEXIT1 is called, and ICSF
does not modify this field.

20 4 Flags.

Reserved. The flag field is used only by the exits for the services. The
field contains binary zeros for the mainline exits.

24 4 Secondary parameter block (SPB) address.

Reserved. The SPB is used only by the exits for the services. The field
contains binary zeros for the mainline exits.

28 4 CCVT address.

Address of the Cryptographic Communication Vector Table (CCVT).
“The Cryptographic Communication Vector Table (CCVT)” on page 357
describes the CCVT in greater detail.

32 8 Module name.

The installation exit's load module name. The field contains the value
of the load module name you specified on the EXIT keyword in the
installation options data set. The field is 8 bytes of characters, and the
value is left-justified and padded with blanks.

Parameters
All mainline exits receive an address list that uses standard entry linkage. Register 1 points to the address
list. Each address in the list points to a parameter. Tables in the next four topics describe the parameters
for each of the mainline exits.

CSFEXIT1
This table describes the parameters for CSFEXIT1:

Table 16. CSFEXIT1 parameters

Parameter
Number of
Bytes Description

1 8 The data set name (DDNAME) of the installation options data set.

2 Variable The command input block for the START command. The command
control block is mapped by IEZCIB.

When ICSF calls this, the Cryptographic Communication Vector Table exists, but the table is not yet
complete.

Chapter 5. Installation exits 165

CSFEXIT2 and CSFEXIT3
Both CSFEXIT2 and CSFEXIT3 receive the same parameters. Table 17 on page 166 describes these
parameters.

Table 17. CSFEXIT2 and CSFEXIT3 parameters

Parameter
Number of
Bytes Description

1 44 A character string that is the CKDS name specified in the CKDSN
installation option.

2 4 A decimal value that is the maximum length permitted for data
passed to services specified in the MAXLEN installation option.

Beginning with z/OS V1 R2, the MAXLEN parameter may still be
specified in the options data set, but only the maximum value limit
will be enforced (2147483647). If a value greater than this is
specified, an error will result and ICSF will not start.

3 4 ICSF environmental options.

Note: Do not change bits 1 - 5.

Byte 1:
Bit

Meaning When Set On
0

Special secure mode enabled.
1 - 5

Reserved.
6

Security Sever (RACF) checking required for authorized callers.
7

PCF coexistence.

Bytes 2–4: Reserved

4 4 Address of the exit name table. Table 19 on page 167 describes the
exit name table.

CSFEXIT4 and CSFEXIT5
Both CSFEXIT4 and CSFEXIT5 receive the same parameters. Table 18 on page 166 describes these
parameters.

Table 18. CSFEXIT4 and CSFEXIT5 parameters

Parameter
Number of
Bytes Description

1 44 A character string that is the CKDS name specified in the CKDSN
installation option.

166 z/OS: z/OS ICSF System Programmer's Guide

Table 18. CSFEXIT4 and CSFEXIT5 parameters (continued)

Parameter
Number of
Bytes Description

2 4 A decimal value that is the maximum length permitted for data
passed to services specified in the MAXLEN installation option.

Beginning with z/OS V1 R2, the MAXLEN parameter may still be
specified in the options data set, but only the maximum value
limit will be enforced (2147483647). If a value greater than this is
specified, an error will result and ICSF will not start.

3 4 ICSF environmental options.

Note: Do not change bits 1 - 5.

Byte 1:
Bit

Meaning When Set On
0

Special secure mode enabled.
1 - 5

Reserved.
6

Security Server (RACF) checking required for authorized
callers.

7
PCF coexistence.

Bytes 2–4: Reserved

4 4 Address of the exit name table. Table 19 on page 167 describes
the exit name table.

5 Variable The command input block. You can use the IEZCIB mapping
macro to map the control block.

The Exit Name Table
The exit name table contains a list of all of the exits and their load module names. Table 19 on page 167
describes the format of the exit name table.

Table 19. Format of the Exit Name table

Offset (Dec)
Number of
Bytes Description

0 4 Exit name table ID. The value is always the character string ENT.

4 2 Exit name table version. The value is always the character string 01.

6 2 Length of the exit name table. This value is in decimal.

8 4 Number of entries in the array which is the number of exits ICSF
supplies. This value is in decimal.

12 4 Subpool that the exit name table is in.

16 4 Reserved.

20 4 Reserved.

Chapter 5. Installation exits 167

Table 19. Format of the Exit Name table (continued)

Offset (Dec)
Number of
Bytes Description

24 4 Reserved.

28 4 Reserved.

32 8 ICSF exit name 1. This value is a character string.

40 8 Installation load module name 1. This value is a character string.

48 4 Flags.

Flag bytes. Only the first two bytes are used; bytes 3 and 4 are
reserved.

Byte 1:
Bit

Meaning When Set On
0

Exit has been requested by the installation.
1

Exit has been loaded.
2

Exit is active.
3

If exit fails, end ICSF.
4

If exit fails, do not call the exit again.
5

If exit fails, fail the service.
6

If exit fails, do nothing.
7

Exit has failed previously.

Byte 2:
Bit

Meaning When Set On
0

The exit should be called.
1

The exit is available to the installation.
2

If the security exit fails, fail the service.
3–7

Reserved.

52 4 Address of the exit.

56 4 Reserved.

60 4 Reserved.

64 8 ICSF exit name 2. This value is a character string.

168 z/OS: z/OS ICSF System Programmer's Guide

Table 19. Format of the Exit Name table (continued)

Offset (Dec)
Number of
Bytes Description

72 8 Installation load module name 2. This value is a character string.

80 4 Flags.

See offset +48 for flag byte definitions.

84 4 Address of the exit.

88 4 Reserved.

92 4 Reserved.

x 8 ICSF exit name a.

x+8 8 Installation load module name a.

x+16 4 Flags.

See offset +48 for flags.

x+20 4 Address of the exit.

x+24 4 Reserved.

x+28 4 Reserved.

Return Codes
All mainline exits can pass back a return code in register 15. CSFEXIT1, CSFEXIT2, and CSFEXIT3 support
these decimal return codes:
Return Code

Description
0

Proceed with initialization.
16

End ICSF.
Any return codes other than those listed cause ICSF to end abnormally.

CSFEXIT4 supports these decimal return codes:
Return Code

Description
0

Proceed with the STOP command.
4

Do not allow the STOP command to proceed.
Any return codes other than those listed cause processing of the STOP command to end abnormally.

CSFEXIT5 supports these decimal return codes:
Return Code

Description
0

Continue processing.
4

End ICSF.

Chapter 5. Installation exits 169

Any return codes other than those listed cause processing of the MODIFY command to end abnormally.

Services installation exits
ICSF provides services that you can use to perform various cryptographic functions. Examples of these
functions include enciphering and deciphering data, generating and verifying message authentication
codes, generating and verifying PINs, and dynamically updating the CKDS and PKDS. You can define an
installation exit for each of the services to customize processing.

Starting with FMID HCR77B0, ICSF provides a single service exit called CSF_SERVICE_EXIT that gets
control for all services. The intent of this exit is for statistics generation. For more information, see
“CSF_SERVICE_EXIT - ICSF callable services exit” on page 178.

For a detailed description of the services, see z/OS Cryptographic Services ICSF Application Programmer's
Guide.

Use this general format to request a service:

 CALL CSNBxxx (
 return_code
 ,reason_code
 ,exit_data_length
 ,exit_data
 ,parameter_5
 ,parameter_6
 .
 .
 .
 ,parameter_N)

Appendix G, “Resource names for CCA and ICSF entry points,” on page 439 lists the ICSF exit names for
each of the services. The parameters that the application passes to a service are known as the service
parameter list, and the parameters vary from service to service. “Parameters” on page 177 describes the
services parameter lists in more detail.

Purpose and use of the exits
Each of the services has an installation exit. Each installation exit for a service has two exit points:

• The Preprocessing exit point. This exit point occurs after an application program calls a service, but
before the service starts processing. For example, you can use this exit point to check or change the
parameters that the application passes on the call, or to end the call. You can also perform additional
security checks.

• The Postprocessing exit point. This exit point occurs after the service has finished processing, but
before the service returns control to the application program. For example, you can use this exit point to
check and change the return code from the service or perform cleanup processing.

Environment of the exits
The exits receive control with these characteristics:

• Supervisor state
• Key 0
• APF-authorized
• TCB or SRB mode
• Cross memory mode
• AR mode
• AMODE(31) orAMODE(64)

The exit receives control in AMODE(64) if the callable service was invoked in AMODE(64); otherwise the
exit receives control in AMODE(31). If you have a callable service exit for a service which supports

170 z/OS: z/OS ICSF System Programmer's Guide

invocation by an AMODE(64) caller, you must recode your exit to be sure it can handle being invoked in
AMODE(64).

• RMODE(ANY)

The exits can change the characteristics during their processing. However, the exits must return to their
caller with the same characteristics as on entry.

You must write the exits in assembler, because you are in AR and cross memory mode and the addresses
of some of the parameters you may access are ALET-qualified. In particular, parameters passed into a
service are in the user's address space which you can access with an ALET of 1.

For information about cross memory and AR mode, see z/OS MVS Programming: Extended Addressability
Guide.

Installing the exits
You install an exit for a service by installing the load module that contains the exit into an APF-authorized
library. ICSF uses this normal search order to locate the exit:

• Job pack area
• Steplib (if one exists)
• Link pack area (LPA)
• Link list (SYS1.LINKLIB concatenation)

Define the ICSF name and the load module name as a value on the EXIT keyword in the installation
options data set. For more information about the installation options data set, see “Parameters in the
installation options data set” on page 33. The EXIT keyword has this syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF name for each service exit. Note that the ICSF
name for each service exit is the same as its name. Appendix G, “Resource names for CCA and ICSF entry
points,” on page 439 lists the ICSF names for each of the service exits. Table 20 on page 172 lists the
ICSF names for each of the compatibility service exits. The load module name is the name of the load
module that contains the exit. The name can be any valid name that your installation chooses. The FAIL
portion of the EXIT keyword specifies the action ICSF takes if the exit cannot be loaded or it ends
abnormally. When the exit fails to load, the valid FAIL options mean:
NONE

Initialization continues. The exit is not available to be called.
EXIT

Initialization continues. The exit is not available to be called.
SERVICE

Initialization continues. The exit is not available to be called.
ICSF

ICSF is ended.

When the exit ends abnormally, the valid FAIL options are:
NONE

No action is taken. The exit can be called again and will end abnormally again.
EXIT

The exit is no longer available to be called again.
SERVICE

The service or program that called the exit is no longer available to be called again.
ICSF

ICSF is ended.

Chapter 5. Installation exits 171

You must specify a FAIL option. If you do not, ICSF returns an error message, ends abnormally, and
generates an SVC dump when attempting to load the exit. If the exit ends abnormally, the service call fails
regardless of the fail option you specified. Fail options apply only to subsequent requests for the service.

Table 20. Compatibility services and their ICSF names

Compatibility Service ICSF Name

Encipher under Master Key CSFEMK

Generate a key CSFGKC

Import a key CSFRTC

Cipher/Decipher CSFEDC

Input
The installation exit for each service gets the address of the exit parameter block (EXPB) in register 0.
ICSF obtains and initializes an EXP for every service call. Figure 4 on page 172 illustrates the contents of
register 0, and Table 21 on page 173 illustrates the EXPB for the service exits.

Register 1 contains the address of an address list. Each address in the list points to a parameter.
“Parameters” on page 177 describes the service parameter list. The parameters the exit receives are the
same parameters that are passed on the call to the service. For more information about the parameters
for each service, see z/OS Cryptographic Services ICSF Application Programmer's Guide.

Figure 4. EXPB control block in the service exits

172 z/OS: z/OS ICSF System Programmer's Guide

Exit parameter block
Table 21 on page 173 describes the contents of the exit control block.

Table 21. EXPB Control Block Format for Services

Offset (Dec)
Number of
Bytes Description

0 4 Name.

The name of the control block. The field contains the character string
EXPB.

4 2 Version.

The version of the control block. The field contains the character
string 01.

6 2 Length.

The length of the control block. The value is 40 in decimal.

8 4 Dynamic area.

The address of a 400-byte area that the exit can use as a dynamic
area.

12 4 Exit area address.

The address of an 8-byte area for the preprocessing and
postprocessing invocations of the exit to use for communication.
ICSF does not check or change this field.

16 4 Exit communication area.

A character string that can be used for communication between
preprocessing and postprocessing invocations of a service exit.

Chapter 5. Installation exits 173

Table 21. EXPB Control Block Format for Services (continued)

Offset (Dec)
Number of
Bytes Description

20 4 Flags.

A flag byte. Each bit setting (on/off) indicates a particular condition.
ICSF sets bit 0 and an exit cannot change that bit. Your exit can set
any of the other bits.
Bit

Meaning When Set On/Off
0

Postprocessing invocation./Preprocessing invocation.
1

Reserved.
2

Use the return and reason code that the exit places in register 0
and register 15 as the service's return code/reason code. Do not
use the exit's return code as the service return code in registers
0 and 15.

The exit can pass any valid return code in register 15 and any
valid reason code in register 0. If this bit is set on, ICSF uses
these codes as the service's return and reason codes. See
“Return Codes” on page 177 for more information about using
exit return codes.

3
Do not call the postprocessing invocation of the service exit./Call
the postprocessing invocation of the service exit.

4
Bypass the service./Run the service.

5
Use the return and reason code that the exit places in the
service's parameter list./Do not store codes the exit places in the
service's parameter list.

The exit can pass any valid return and reason code in the first
two parameters of the service's parameter list. “Parameters” on
page 177 describes the service parameter list.

6
CSFSKRC bypass input label parsing./CSFSKRC parse the input
label.

7–31
Reserved.

24 4 Secondary parameter block.

The address of the secondary parameter block. The exit can use the
SPB to determine the environmental information of the service. For a
description of the SPB, see “Secondary parameter block” on page
175.

174 z/OS: z/OS ICSF System Programmer's Guide

Table 21. EXPB Control Block Format for Services (continued)

Offset (Dec)
Number of
Bytes Description

28 4 CCVT.

Address of the Cryptographic Control Vector Table (CCVT). For a
description of the CCVT, see “The Cryptographic Communication
Vector Table (CCVT)” on page 357.

32 8 Module name.

The installation exit's load module name. The field contains the value
of the load module name you specified on the EXIT keyword in the
installation options data set. The field is 8 bytes of characters, and
the value is left-justified and padded with blanks.

Secondary parameter block
Offset +24 of EXPB contains the address of the secondary parameter block (SPB). The exit can use the
SPB to determine the environmental conditions of the service. Table 22 on page 175 describes the
contents of SPB.

Table 22. SPB Control Block Format

Offset (Dec) Number of Bytes Description

0 4 Name.

The name of the control block. The field contains the character string SPB.

4 2 Version.

The version of the control block. The field contains the character string 04.

6 2 Length.

The length of the control block.

8 4 CCVT.

The address of the Cryptographic Communication Vector Table (CCVT). For a description of
the CCVT, see “The Cryptographic Communication Vector Table (CCVT)” on page 357.

12 4 Signal Information Word.

Bytes 1–2 Reserved.

Bytes 3–4 of the field contain the installation-assigned code number for an installation-
defined service.

Chapter 5. Installation exits 175

Table 22. SPB Control Block Format (continued)

Offset (Dec) Number of Bytes Description

16 4 Flags and Indicators. Each byte of this field is either an indicator byte or contains flag bits.
The contents of each byte in the field are:

Byte 1—PSW key. This byte contains the original caller's program status word key. The first
four bits are the key and the remaining four bits are zeros.

Byte 2—Caller's state. Each bit in byte 2 indicates a condition of the caller's state.

Bit
Meaning When Set On

0
ICSF was entered via SVC entry from a PCF compatibility macro.

1
Original caller in AMODE(31).

2
Original caller in AR mode.

3
Original caller in SRB mode.

4
Original caller in supervisor state or system key.

5
Original caller in AMODE(64).

6–7
Reserved.

Byte 3—Flag byte 1. The first flag byte. Each bit that is set on indicates a particular
condition.

Note: These bits are informational. Do not change bits 0 and 1.

Bit
Meaning When Set On

0
Reserved.

1
Reserved.

2
The recovery routine should not retry.

3 - 7
Reserved.

Byte 4—Flag byte 2

Bit
Meaning When Set On

0
The service parameter list has a position for a return code.

1
The service parameter list has a position for a reason code.

2
Reserved.

3
The caller has no exit data.

4 and 5
Reserved.

6-7
Reserved.

20 4 Reserved.

24 4 Auxiliary SPB Pointer

28 4 EDC buffer pointer.

32 4 EDC buffer length.

176 z/OS: z/OS ICSF System Programmer's Guide

Table 22. SPB Control Block Format (continued)

Offset (Dec) Number of Bytes Description

36 4 Address of XPB.

40 8 ID for latch manager.

48 4 Address for ERPB.

52 8 Original caller's register 1.

60 4 Address of CPRB request storage.

64 4 Length of CPRB request storage.

68 4 Address of CPRB reply storage.

72 4 Length of CPRB reply storage.

76 4 CCPS address.

80 4 Serialization block address.

84 4 Recovery token.

88 8 Recovery footprint for hash tables.

96 4 Reserved.

100 4 Pointer to metal C stack.

104 2 Entry point index of metal C caller.

106 2 Flags and indicators

Byte 1 - Reserved.

Byte 2 - Saved value of the caller's key.

108 4 ASCB of SPB owner.

112 4 Register 14 from CSFMIREC.

116 4 Reserved.

120 4 ENVR object address.

124 4 ENVR object length.

128 4 Regional cryptographic request block address.

132 20 Reserved.

152 512 CTRACE buffer.

Parameters
Each service has a unique parameter list. Parameters 1–4 are always the return code, reason code, exit
data length, and exit data. The other parameters differ with each service. The installation exit gets passed
the address of the service parameter list in Register 1. For a description of each service's parameter list,
refer to z/OS Cryptographic Services ICSF Application Programmer's Guide.

Return Codes
To use a return code and reason code that are set in the postprocessing exit, you must set bit 2 in Offset
+20 of EXPB. Setting bit 2 on causes ICSF to return the return code from the exit in register 15 and the
reason code in register 0. Even though the application program receives the codes from the exit in the
registers, the program still receives the codes from the service in the parameter list. The return code is
the first parameter, and the reason code is the second parameter in the list.

Some control languages can access registers more easily than others. For this reason, ICSF allows you to
return the return code and the reason code in both the registers and the parameter list. To do this, set bit
5 as well as bit 2 in Offset +20 of EXPB. The application then receives the return code and the reason
code from the exit in both the registers and the parameter list.

Chapter 5. Installation exits 177

If you do not set either of or both of the flag bits, the service ignores any return or reason code from the
exit. The application program receives the codes from the service in both the registers and the parameter
list.

The exit can pass back any valid return code for each service. For a listing of each service's return codes,
see z/OS Cryptographic Services ICSF Application Programmer's Guide.

CSF_SERVICE_EXIT - ICSF callable services exit
The ICSF callable services exit CSF_SERVICE_EXIT can be used to generate statistics for all ICSF callable
services. This exit point occurs after the callable service finished processing, but before the service
returns control to the application program. The intent of this exit is for statistics generation.

Controlling the exit routine through the dynamic exits facility
ICSF defined CSF_SERVICE_EXIT to the dynamic exits facility. You can refer to the exit by the name
CSF_SERVICE_EXIT. You can use the EXIT statement of the PROGxx parmlib member, the SETPROG EXIT
operator command, or the CSVDYNEX macro to control this exit and its exit routines.

If you do not associate any exit routines with CSF_SERVICE_EXIT in the PROGxx parmlib member, the
system defaults to having no exit routine.

To limit the number of times the exit routine abnormally ends before it becomes inactive, use the
ADDABENDNUM and ABENDCONSEC parameters on the CSVDYNEX REQUEST=ADD macro or the
ABENDNUM and CONSEC parameters of the SETPROG EXIT operator command or of the EXIT statement
of the PROGxx parmlib member. An ABEND is counted when both of the following conditions exist:

• The exit routine does not provide recovery or the exit routine does provide recovery, but percolates the
error.

• The system allows a retry; that is, the recovery routine is entered with bit SDWACLUP off.

By default, the system disables the exit routine after two consecutive ABENDs.

Exit routine environment
CSF_SERVICE_EXIT receives control in the following environment:

• Enabled for I/O and external interrupts.
• In supervisor state with PSW key 0.
• In AMODE(31) or AMODE(64), depending on the AMODE of the exit routine.
• In Primary ASC mode.
• In cross-memory mode with P = ICSF's address space and S = user's address space. Home might or

might not equal secondary.
• With no locks held.
• Task or SRB mode.

If the callable service was started in AMODE(64) and an exit routine, which is AMODE(31), needs to
access the user's parameters, the exit routine needs to switch to AMODE(64). Regardless of AMODE, the
exit routine must not rely on the high 32 bits of any general register having a specific value on entry.

An exit routine can change characteristics (AMODE, ASC mode, locks-held state, cross-memory state, and
so on) during its processing. However, the exit routine must return with the same characteristics as on
entry. If you plan to access the user's parameters, you must write the exits in a language that can access
ALET-qualified variable. This is because you are in AR mode and all the user's parameters, including the
parameter list itself, are ALET-qualified. In particular, parameters that are passed into a service are in the
user's address space, which you can access with an ALET of 1 (secondary).

178 z/OS: z/OS ICSF System Programmer's Guide

Exit recovery
If an exit routine ABENDs and does not have recovery that retries, the system records the error to LOGREC
and ICSF calls any exit routines that remain to be called. Whether the exit routine continues to be started
depends on the ABEND processing of the dynamic exits facility.

Note: ICSF recommends, for system performance reasons, that the exit not establish recovery unless it
modifies critical resources.

Entry specifications
ICSF passes the address of the IXIB (ICSF exit interface block) to exit CSF_SERVICE_EXIT.

The contents of the registers on entry to the exit are as follows.
Register

Contents
R0

N/A
R1

Address of IXIB - ICSF exit interface block.
R2 - R12

N/A
R13

Address of 144-byte save area.
R14

Return address.
R15

Entry point address of exit.
AR0

First 4 bytes of 8-byte PARAM area that is provided by the exit routine owner on CSVDYNEX ADD.
AR1

Second 4 bytes of 8-byte PARAM area that is provided by the exit routine owner on CSVDYNEX ADD.
Parameter list contents: Register 1 contains the address of the ICSF exit interface block (IXIB), which
resides in the primary address space (ICSF's address space). The IXIB is mapped by macro CSFZIXIB and
the layout is shown in Table 23 on page 179.

Table 23. IXIB control block format

Offset (Dec) Number of bytes Description

0 4 Parmlist with a single entry that points to the IXIB.

4 4 EBCDIC ID.

8 2 Version number of this IXIB.

10 1 Flags
X'80' Bit = 1

Caller is AMODE(31).
X'40' Bit = 1

Caller is AMODE(64).

11 1 PSW key is in the first 4 bits.

12 4 Address of 2048-byte work area.

16 2 IBM assigned service number.

Chapter 5. Installation exits 179

Table 23. IXIB control block format (continued)

Offset (Dec) Number of bytes Description

18 2 Installation service number.

20 4 Reserved.

24 8 Service name.

32 8 Original caller's R1.

40 4 Return code from service.

44 4 Reason code from service.

48 16 STCKE value before service called.

64 16 STCKE value after service called.

80 32 Reserved.

Note on original caller's R1
Each ICSF callable service has a unique parameter list. For a description of each service's parameter list,
see z/OS Cryptographic Services ICSF Application Programmer's Guide.

Note on exit behavior
Exit routines that are registered to CSF_SERVICE_EXIT must not change any parameters, including the
IXIB or anything it points to.

Cryptographic key data set entry retrieval installation exit
The cryptographic key data set entry retrieval installation exit (CSFCKDS) is called when a service
requests an entry from the in-storage cryptographic key data set (CKDS) by label. ICSF calls this exit after
it finds the record in the CKDS and before it returns the record to the service.

Note: This exit is given control only for a fixed-length record CKDS. The exit does not work with the
variable-length record format of the CKDS.

Purpose and use of the exit
The exit point lists the entry that matches a certain label and type. You can use the exit to check fields in a
record and decide whether to use the record. The exit sets a return code that specifies whether to use the
record or not. Use the exit_data parameter in the service to specify what the exit should use as a search
value.

For example, you can use the CKDS entry retrieval exit to perform a specific search of the installation data
field. An installation can specify whatever it chooses to in the installation data field. The exit can select a
record that matches a certain key label and key type. You can check the record and accept or reject it
based on the installation data field.

Note: The cryptographic key data set entry retrieval installation exit will not be given control if
SYSPLEXCKDS(YES,FAIL(xxx)) is specified in the ICSF installation options data set.

Environment of the exit
The exit receives control with these characteristics:

• Supervisor state
• Key 0
• APF-authorized

180 z/OS: z/OS ICSF System Programmer's Guide

• TCB or SRB mode
• AR mode
• AMODE(31)
• RMODE(ANY)
• Cross memory mode

The exit can change the characteristics during its processing. However, the exit must return to its caller
with the same characteristics as on entry.

The exit runs in the cross memory mode in the ICSF address space. The CKDS records are ALET-qualified.
ICSF supplies the address and the ALET of a CKDS record as parameters to the CKDS retrieval exit.

For information about cross memory mode and AR mode, see z/OS MVS Programming: Extended
Addressability Guide.

Installing the exit
Install the CKDS entry retrieval exit by installing the load module that contains the exit into an APF-
authorized library. ICSF uses this normal z/OS search order to locate the exit:

• Job pack area
• Steplib (if one exists)
• Link pack area (LPA)
• Link list (SYS1.LINKLIB concatenation)

Define the ICSF name and the load module name on the EXIT keyword in the installation options data set.
“Parameters in the installation options data set” on page 33 describes the installation options data set in
further detail. The EXIT keyword has this syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF name for the exit. The ICSF name for the CKDS
entry retrieval exit is CSFCKDS. The load module name is the name of the load module that contains the
exit. The name can be any valid name that your installation chooses. The FAIL portion of the EXIT
keyword specifies the action ICSF takes if the exit cannot be loaded or if it ends abnormally. The valid
FAIL options are:
NONE

Do not take any action.
EXIT

Do not call this exit again. The exit will not receive control during subsequent attempts at CKDS
retrieval.

SERVICE
Fail the service. All subsequent attempts at CKDS entry retrieval fail.

ICSF
End ICSF.

You must specify a FAIL option. If you do not, ICSF returns an error message, ends abnormally, and
generates an SVC dump when attempting to load the exit. If the exit ends abnormally, the attempt at
CKDS entry retrieval fails, regardless of the FAIL option you specified. FAIL options only apply to
subsequent attempts at CKDS entry retrieval.

Input
The CKDS entry retrieval exit receives the address of an address list passed in register 1. Each address in
the list points to a parameter. The address list exists in the ICSF address space, and register 1 is not ALET-
qualified.

Table 24 on page 182 describes the parameters for the CKDS entry retrieval exit.

Chapter 5. Installation exits 181

Table 24. The CKDS Entry Retrieval Exit Parameters

Parameter Description

1 The address of the current CKDS record. See “Cryptographic Key Data Set (CKDS)
formats” on page 235 for a description of the CKDS record format.

2 The address of the ALET of the current CKDS record. This record is a fullword
address.

3 The address of the record that matches a certain label and type. This value is a
fullword integer. The parameter is in the ICSF address space and the exit can access
the parameter using an ALET of 0.

4 The address of the record chosen. This value is a fullword integer. The parameter is
in the ICSF address space and the exit can access the parameter using an ALET of 0.

5 The address of the exit data length. This value is a fullword integer. The parameter is
in the caller's address space, which is the secondary address space, and the exit can
access the parameter using an ALET of 1.

6 The address of the exit data. For a description of exit data, see z/OS Cryptographic
Services ICSF Application Programmer's Guide. The parameter is in the caller's
address space, which is the secondary address space, and the exit can access the
parameter using an ALET of 1.

7 The address of the secondary parameter block. See “Secondary parameter block” on
page 175 for a description of the secondary parameter block. The parameter is in the
ICSF address space and the exit can access the parameter using an ALET of 0.

Return codes
You can pass a return code back in register 15.

The valid decimal return codes are:
Return Code

Description
0

Use the record.
4

Do not use the record.

If you specify not to use any of the records that match the search value, ICSF returns control to the
application. It returns with return code 12 and reason code 10024, which indicate that the exit rejected
all the keys in the search.

PCF conversion program installation exit
Use the PCF conversion program to convert a CKDS from the Programmed Cryptographic Facility (PCF)
format to the ICSF format. The conversion program converts each record in the PCF CKDS to the CKDS
format that ICSF uses, and then writes the new record to an ICSF CKDS. The conversion program extends
the label field to 64 bytes.

An ICSF CKDS record contains an installation data field that you can use to further identify the record.
This field can contain any information about a record that your installation would like to use. You can use
the conversion program exit to change the information in this field. You can also use the conversion
program exit to have the conversion program not place a converted CKDS entry in the ICSF CKDS.

Chapter 8, “Migration from PCF to z/OS ICSF,” on page 219 contains more information about the PCF
conversion program.

182 z/OS: z/OS ICSF System Programmer's Guide

Purpose and use of the exit
The PCF conversion program installation exit (CSFCONVX) is called at three points during processing of
the conversion program:

• During conversion program initialization. This is known as the conversion preprocessing invocation. At
this point, you can use the exit to change the ICSF CKDS header record installation data field.

• During conversion program individual record processing. This is known as the record processing
invocation. At this point, the conversion program is converting the PCF entry but has not yet placed the
entry into the ICSF CKDS. You can use the exit to change the installation data field in the entry for the
ICSF CKDS. You can also specify that the conversion program not place the entry into the ICSF CKDS.

• Just prior to conversion program termination. This is known as the conversion postprocessing
invocation. At this point, like the preprocessing exit point, you can use the exit to change the ICSF CKDS
header record installation data field.

Environment of the exit
The exit receives control with these characteristics:

• Problem program state.
• APF-authorized
• TCB mode
• Address Space Control mode=primary
• AMODE(31)
• RMODE(ANY)

The exit can change the characteristics during its processing. However, the exit must return to its caller
with the same characteristics as on entry.

The exit runs in task mode in the caller's own address space.

Installing the exit
Install the load module that contains the exit into an APF-authorized library. ICSF uses this normal z/OS
search order to locate the exit:

• Job pack area
• Steplib (if one exists)
• Joblib (if one exists)
• Link pack area (LPA)
• Link list (SYS1.LINKLIB concatenation)

Define the ICSF name and load module name on the EXIT keyword in the installation options data set. For
more information about the installation options data set, see “Parameters in the installation options data
set” on page 33. The EXIT keyword has this syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF name for the exit. The ICSF name for the
conversion program exit is CSFCONVX. The load module name is the name of the load module that
contains the exit. This name can be any valid name that your installation chooses. The FAIL portion of the
EXIT keyword specifies the action ICSF takes if the exit cannot be loaded. The valid FAIL options are
NONE, EXIT, SERVICE, and CSF. For the conversion program exit, you can use these options only:
NONE

Initialization continues even if exit cannot be loaded.
ICSF

Initialization ends if exit cannot be loaded.

Chapter 5. Installation exits 183

You must specify a FAIL option. If you do not, ICSF returns an error message, ends abnormally, and
generates an SVC dump when attempting to load the exit.

If the exit ends abnormally, the conversion program does also.

Input
ICSF supplies the address of the conversion program exit parameter block (CVXP) in register 2 each time
it calls the PCF conversion program exit. The exit does not receive a parameter list. “Entry and return
specifications” on page 159 gives a complete list of the registers on entry to the conversion program exit.

Table 25 on page 184 describes the contents of the exit control block.

Table 25. CVXP Control Block Format

Offset (Dec)
Number of
Bytes Description

0 4 Name.

The name of the control block. The field contains the character string
CVXP.

4 2 Version.

The version of the control block. The field contains the character
string 01.

6 2 Length.

The length of the control block. The value is 28 in decimal.

8 4 Return Code.

The value the exit returns. Valid decimal values for this field are:
Return Code

Description
0

Normal.
4

Do not process the entry.
8

End conversion program.

12 4 Address of the ICSF CKDS installation data area.

16 4 The value in decimal of the length of the ICSF CKDS installation data
area.

20 1 Action.

Bit 0 is set on if the action was to change an entry on the ICSF CKDS.
Bit 0 is set off if the action was to add an entry to the ICSF CKDS. The
rest of the bits in this byte are reserved.

184 z/OS: z/OS ICSF System Programmer's Guide

Table 25. CVXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

21 1 Call Point.

Indicates the invocation point of the exit. The exit cannot change this
field and the conversion program does not use this field on return
from the exit. You can determine the invocation point by the bit that
is set on.
Bit

Meaning When Set On
0

Conversion preprocessing invocation.
1

Conversion postprocessing invocation.
2

Record processing invocation.
3-7

Reserved.

22 6 Reserved.

Return codes
You can pass a return code back to the conversion program in the CVXP control block (offset +8). The exit
can use return codes to reject records for conversion processing or end the conversion program.
Return Code

Description
0

Normal.
4

Do not process the entry.
8

End conversion program.

Single-record, Read-write installation exit
ICSF provides an exit that is called when a record is read from or written to a CKDS. ICSF calls the single-
record, read-write (CSFSRRW) exit under these conditions:

• The PCF conversion program converts a record into ICSF CKDS format. The conversion program calls
the exit before it writes a converted record to the ICSF CKDS.

• ICSF reenciphers a disk copy of a CKDS under a new master key. ICSF calls the exit two times during
this processing; after ICSF reads a record to reencipher it and before ICSF writes the reenciphered
record.

• ICSF refreshes the in-storage copy of a CKDS. ICSF calls this exit after reading a record from the disk
copy to place into storage.

Using the exit, you can do such things as prevent the record from being processed, or add user
information to the record.

Note: This exit is given control only for a fixed-length record CKDS. The exit does not work with the
variable-length record format of the CKDS.

Chapter 5. Installation exits 185

Purpose and use of the exit
The exit receives a parameter block that describes the CKDS record and the action occurring to the
record. By setting a return code in the parameter block, the exit may affect the processing of the record.
Depending on the return code, one of these actions occurs:

• ICSF continues to read the record.
• ICSF does not read or write the record.
• ICSF does not read or write the entire CKDS.

The parameter block contains the address of the CKDS record. The exit can add information into the
installation data field of the record. For integrity reasons, ICSF receives only changes to this particular
field. If the exit sets a return code to continue processing, ICSF processes the record with this
information.

The KGUP exit, the PCF conversion program exit, and the single-record, read-write exit can add
information to the installation data field of the CKDS header record to identify the data set. If the header
record installation data field contains information identifying the CKDS, the single-record, read-write exit
can check the field to ensure that it is processing the correct data set. If the exit finds that it is processing
the wrong CKDS, the exit can set a return code to stop the processing of the entire data set.

You can use the exit to prevent processing of a record. You can check certain fields in the record and
specify that the record not be processed. For example, during postprocessing conversion, you can prevent
the processing of any record of a certain key type. However, the exit should never prevent processing of a
record containing a system key because ICSF uses these keys in its processing. You differentiate a system
key record from other key records by its key label. A system key record label contains all binary zeros. All
other key labels contain an alphabetic first character with the remaining characters as either alphabetic or
numeric.

Environment of the exit
The exit receives control with these characteristics:

• Problem program state
• APF-authorized
• TCB mode
• Address Space Control mode=primary
• AMODE(31)
• RMODE(ANY)

The exit can change the characteristics during its processing. However, the exit must return to ICSF with
the same characteristics as on entry.

When the single-record, read-write exit is called, the exit parameter block is in the caller's address space.
The exit is loaded in the caller's address space. The caller is either the PCF conversion program, the utility
program (CSFEUTIL), or an ICSF panel.

Installing the exit
Install the load module that contains the exit into an APF-authorized library. ICSF uses this search order
to locate the exit:

• Job pack area
• Steplib (if one exists)
• Joblib (if one exists)
• Link pack area (LPA)
• Link list (SYS1.LINKLIB concatenation)

186 z/OS: z/OS ICSF System Programmer's Guide

Define the ICSF name and load module name on the EXIT keyword of the installation options data set. For
more information about the installation options data set, see “Parameters in the installation options data
set” on page 33. The EXIT keyword has this syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF name for the exit. The ICSF name for the single-
record, read-write exit is CSFSRRW. The load module name is the name of the load module that contains
the exit. The name can be any valid name that your installation chooses. The FAIL portion of the EXIT
keyword specifies the action ICSF takes if the exit cannot be loaded or ends abnormally. The valid FAIL
options are:
NONE

Do not take any action.
EXIT

Do not call this exit again.
SERVICE

Fail the service that called the exit.
ICSF

Fail the service that called the exit.

You must specify a FAIL option. If you do not, ICSF returns an error message, ends abnormally, and
generates an SVC dump when attempting to load the exit. If you specify FAIL(ICSF) and the exit cannot be
loaded, ICSF initialization does not continue. If you specify FAIL(ICSF) and the exit ends abnormally, ICSF
issues an advisory message that ICSF should be ended.

Input
The single-record, read-write exit receives the address of the address list passed in register 1. The first
address in the address list is for the read-write exit parameter block (RWXP). The exit does not receive a
parameter list. “Entry and return specifications” on page 159 gives a complete list of the registers on
entry to the single-record, read-write exit.

The RWXP parameter block contains the address of the CKDS record that is being processed and
information about the situation in which the exit is called. The exit sets a return code in a field in the block
to specify whether the processing should continue. Table 26 on page 187 describes the RWXP control
block.

Table 26. RWXP Control Block Format

Offset (Dec)
Number of
Bytes Description

0 4 Name.

The name of the control block. The field contains the character string
RWXP.

4 2 Version.

The version of the control block. The field contains the character
string 01.

6 2 Length.

The length of the control block. The value of this field is 32 in
decimal.

Chapter 5. Installation exits 187

Table 26. RWXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

8 4 Return Code.

The value the exit returns. Valid decimal values for this field are:
Return Code

Description
0

Process current CKDS record
4

Do not process current CKDS record
8

End processing

12 4 Address of the CKDS record.

16 4 The value in decimal of the length of the CKDS record.

20 7 Action.

The field is a 7-byte character string describing the action performed
on the CKDS record. The field can contain these values:

• READ
• WRITE
• DELETE
• REWRITE

Note that the value of the field is left-justified and padded with
blanks.

27 1 Exit Invocation Reason

The reason that the exit was invoked. The field relates to only the
CKDS and can contain one of these values:
2

Refresh of the in-storage CKDS with a disk copy of a CKDS. The
value of the Action field is READ.

3
Reencipher of the in-storage CKDS from a disk copy of a CKDS.
The value of the Action field is READ or WRITE.

5
Conversion record postprocessing. The value of the Action field is
WRITE.

8
Key entry hardware input. The value of the Action field is READ or
WRITE.

28 4 Data set type.

Return codes
You can pass a return code back to the single-record, read-write process in the RWXP control block (offset
+8). The exit can use the return code to reject records or to end the single record read-write process.
These values are valid decimal return codes:

188 z/OS: z/OS ICSF System Programmer's Guide

Return Code
Description

0
Process the current CKDS record.

4
Do not process the current CKDS record.

8
End processing.

Exit points for security installation exits
IBM-supplied security exit routines were removed in ICSF/MVS Version 2 Release 1. The exit points
themselves are still available.

Security installation exits
ICSF provides these exit points to control access to the keys in the in-storage CKDS and to the services.

• Security Initialization Exit
• Security Termination Exit
• Security Service Exit
• Security Key Exit

Purpose and use of the exits
There are two groups of security exits. The security initialization exit (CSFESECI) and security termination
exit (CSFESECT) are called during ICSF mainline processing to maintain a security communication area
that is used by the other security exits.

Next is a description of each point where ICSF calls security exit routines.

Security initialization exit
ICSF calls this exit during initialization just before calling the ICSF mainline exit CSFEXIT. You can use this
exit to anchor resource lists, work areas, and other data to the security communication area. The security
service exit (CSFESECS) and security key exit (CSFESECK) can be used to control access to resources on
ICSF and for logging in SMF the results of any authorization checks that are made. The security
initialization exit defined in the options data set is only invoked if CSFESECS, CSFESECK, or both are also
defined.

Security termination exit
ICSF calls this exit as the last function when ICSF ends, before deleting all the installation exits. You can
use this exit to free whatever is anchored to the security communication area.

Security service exit
ICSF calls this exit when an application uses an IBM-supplied service, before calling any other installation
exit that is associated with that service. You can use this exit to control access to a service. See Appendix
G, “Resource names for CCA and ICSF entry points,” on page 439 for a list of services.

Security key exit
ICSF calls this exit when an application uses a key in the in-storage CKDS, before any other installation
exit associated with that use of the key is called. You can use this exit to control access to the keys in the
CKDS.

Chapter 5. Installation exits 189

Environment of the exits
The security initialization and termination exits receive control with these characteristics:

• Supervisor state
• Key 0
• APF-authorized
• TCB mode
• Address Space Control mode=access register mode
• AMODE(31)
• RMODE(ANY)

The exits can change the characteristics during their processing. However, the exits must return to ICSF
with the same characteristics as on entry.

The security service and key exits receive control with these characteristics:

• Supervisor state
• Key 0
• APF-authorized
• TCB mode
• Cross memory mode
• AR mode
• AMODE(31)
• RMODE(ANY)

The exits can change the characteristics during their processing. However, the exits must return to ICSF
with the same characteristics as on entry.

Note: The security exits are not called in SRB mode.

Installing the exits
You install the security exits by installing the load module that contains the exit into an APF authorized
library. ICSF uses this normal search order to locate the exit:

• Job pack area
• Steplib (if one exists)
• Link pack area (LPA)
• Link list (SYS1.LINKLIB concatenation)

Use the EXIT keyword in the installation options data set to define the ICSF name and load module name.
For information about the installation options data set, see “Parameters in the installation options data
set” on page 33. The EXIT keyword has this syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF identifier for each exit, CSFESECI, CSFESECT,
CSFESECS, and CSFESECK. The load module name is the name of the load module that contains the exit.
The name can be any valid name your installation chooses. The action that the FAIL portion of the EXIT
keyword specifies depends on the type of security exit.

For the security initialization and termination exits, the FAIL portion specifies the action ICSF takes if the
exit cannot be loaded. The valid FAIL options mean:
NONE

Continue initialization even if exits cannot be loaded.

190 z/OS: z/OS ICSF System Programmer's Guide

SERVICE
Continue initialization even if exits cannot be loaded.

EXIT
Continue initialization even if exits cannot be loaded.

ICSF
End ICSF if exits cannot be loaded.

You must specify a FAIL option. If you do not, ICSF returns an error message, ends abnormally, and
generates an SVC dump when attempting to load the exit.

If the security initialization exit ends abnormally, ICSF ends. If the security termination exit ends
abnormally, ICSF continues to end.

For the security service and key exits, the FAIL portion specifies the action ICSF takes if the exit cannot be
loaded or ends abnormally. When the service or key exit is loaded, the valid FAIL options mean:
NONE

Continue initialization even if exits cannot be loaded.
SERVICE

Continue initialization even if exits cannot be loaded.
EXIT

Continue initialization even if exits cannot be loaded.
ICSF

End ICSF if exits cannot be loaded.

You must specify a FAIL option. If you do not, ICSF returns an error message, ends abnormally, and
generates an SVC dump when attempting to load the exit.

When the security service exit ends abnormally, the valid FAIL options mean:
NONE

Process subsequent calls to the service as if no abnormal ending occurred. Call the exit for each call of
a service.

SERVICE
Fail on subsequent calls to the particular service.

EXIT
Do not call the exit again. Bypass the exit on subsequent calls to any IBM service.

ICSF
End ICSF.

If the security service exit ends abnormally, ICSF ends the service call before performing the service.

When the security key exit ends abnormally, subsequent attempts to access the in-storage CKDS are
processed as if no abnormal ending occurred. The exit continues to be called for each access attempt
regardless of the FAIL option.

If the security key exit ends abnormally, ICSF ends the attempt to access the CKDS before performing the
access.

Input
The security initialization and termination exits receive the address of an 8-byte security communication
area in register 1. When ICSF starts, the security initialization exit can use this area as an anchor for
resource lists, work areas, or any other data that your service or keys security exits need to check
authorizations. When ICSF ends, the security termination exit can free any system resources that are
anchored to this area and used by the service or keys security exits. For example, the exit can free storage
that is allocated from the common storage area (CSA).

When a call to a service occurs, the security service exit receives the address of an address list passed in
register 1. Table 27 on page 192 describes the parameters the exit receives:

Chapter 5. Installation exits 191

Table 27. Parameters received by the Security Service Exit

Parameter
Number of
Bytes Description

1 8 The security communication area.

2 8 The character string CSFSERV.

3 8 The name of the service being called.

When an attempt to access a CKDS entry occurs, the security key exit receives the address of an address
list passed in register 1. Table 28 on page 192 describes the parameters this exit receives:

Table 28. Parameters received by the Security Key Exit

Parameter
Number of
Bytes Description

1 8 The security communication area.

2 8 The character string representing the SAF class being checked.
May be CSFKEYS or XCSFKEY.

3 64 The label of the key entry being accessed.

Register 0 contains the address of the exit parameter block (EXPB). See Figure 4 on page 172 and Table
21 on page 173.

Return codes
All the security exits can pass back a return code in register 15. The security initialization exit supports
these decimal return codes:
Return Code

Description
0

Proceed with initialization.
16

End ICSF.

Any return codes other than those listed cause ICSF to end abnormally.

The security termination exit supports these decimal return codes:
Return Code

Description
0 or 16

Proceed with termination.

Any return codes other than those listed cause ICSF to end abnormally.

The security service exit supports these decimal return codes:
Return Code

Description
0 or 4

Proceed with the service call.

Any return codes other than those that are listed cause the service call to fail.

The security key exit supports these decimal return codes:
Return Code

Description

192 z/OS: z/OS ICSF System Programmer's Guide

0
Proceed with the access of the CKDS entry.

4
If the second input parameter is CSFKEYS, proceed with the access of the CKDS entry. Otherwise, the
access is failed.

Any return codes other than those that are listed cause the access of the key to fail.

Key generator utility program installation exit
The key generator utility program (KGUP) generates and maintains keys in the cryptographic key data set
(CKDS). You can use KGUP to generate or supply a key to update the CKDS. KGUP generates keys to use in
key exchange with other systems. ICSF provides an exit for customizing KGUP processing. For information
about using KGUP to managing cryptographic keys, see z/OS Cryptographic Services ICSF Administrator's
Guide.

Purpose and use of the exit
You can use the KGUP installation exit (CSFKGUP) to modify records in the CKDS, write copies of records
to alternate data sets, or put additional information in the SMF record. There are many other uses for the
KGUP exit depending on your installation's needs. Examine the calling points for an exit and the active
control block fields at each calling point to determine other applications for the exit.

KGUP calling points
After an ICSF administrator submits a KGUP job for processing, KGUP calls exits at four points in
processing:

1. During KGUP initialization. This is known as the KGUP preprocessing exit. After the KGUP job begins
but before KGUP starts processing a control statement, KGUP calls this exit.

You can use this exit to place additional information in the installation data field of the CKDS header
record. You may want to do this if you need to process different cryptographic key data sets differently.
You can place information in the installation data field of the record, and then subsequent calls of the
exit can use this information as the basis for performing processes.

2. Before KGUP processes a key that is identified by a control statement. This is known as the record
preprocessing exit. Before KGUP accesses the CKDS to retrieve the key that is requested in the control
statement, KGUP calls the exit again.

Note: This call occurs before KGUP accesses the CKDS. If an exit routine alters a key entry at this call,
KGUP accesses the CKDS with the altered entry.

You can use this exit to provide additional security for entering clear key values. When a user enters a
clear key in a control statement, use the exit to change the value. In this way, the user never knows the
actual clear value in the CKDS. For example, a user enters zeros for clear key values. Your exit
generates some random number and replaces the user's clear key value. KGUP then processes the
exit's random number as the value to write to the CKDS.

3. Before KGUP updates the CKDS with a key entry. This is known as the record postprocessing exit.
After KGUP processes a key and before KGUP updates the CKDS, KGUP calls the exit a third time.

At this call, the installation exit can change any information in the Key Output Data Set. Changing the
Key Output Data Set also enters the changed keys into the Control Statement Output Data Set, if the
keys are exportable. You can use this exit to create audit trails.

KGUP will not call the exit for this calling point when the CKDS is in KDSR format.
4. During KGUP termination. This is known as the KGUP postprocessing exit. Calls to this exit occur after

KGUP completes processing but before KGUP returns control to ICSF.

Chapter 5. Installation exits 193

Note: If an error occurs in exit processing, KGUP does not call the remaining exit invocations. If an error
occurs in KGUP processing that does not result in an abnormal ending, KGUP does not call the remaining
exit invocations.

Processing in the exit
At each call, the exit receives the address of the KGUP exit parameter block (KGXP) in register 1. The exit
can access any of the data in KGXP. The exit can alter some of the fields in KGXP, while others are simply
references. Also, the KGUP exit can alter some fields at some calls but not at other calls.

A field in KGXP gives the calling point of the exit. The exit uses this field to determine when to call the exit
to perform appropriate processing. “Input” on page 195 gives a more detailed explanation of the KGXP
control block, the values it contains, and when an exit can use or change the values.

Environment of the exit
The KGUP calls the exit only in the address space where KGUP is running. The exit receives control with
these characteristics:

• Supervisor state
• APF-authorized
• TCB mode
• Address Space Control mode=primary
• AMODE(31)
• RMODE(ANY)

The exit can change the characteristics during its processing. However, the exit must return to its caller
with the same characteristics as on entry.

Installing the exit
Install the load module that contains the exit into an APF authorized library. ICSF uses this search order
to locate the exit:

• Job pack area
• Steplib (if one exists)
• Joblib (if one exists)
• Link pack area (LPA)
• Link list (SYS1.LINKLIB concatenation)

Define the ICSF name and load module name on the EXIT keyword in the installation options data set.

Note: The load module name must not be named CSFKGUP

For more information about the installation options data set, see “Parameters in the installation options
data set” on page 33. The EXIT keyword has this syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF name for the KGUP exit. The ICSF name for the
KGUP exit is CSFKGUP. The load module name is the name of the load module that contains the exit. The
name can be any valid name that your installation chooses. The FAIL portion of the EXIT keyword
specifies the action ICSF takes if the exit cannot be loaded. The valid FAIL options are NONE, EXIT,
SERVICE, and ICSF. The FAIL options available to the KGUP exit are:
NONE

Initialization continues even if exit cannot be loaded.
ICSF

Initialization ends if exit cannot be loaded.

194 z/OS: z/OS ICSF System Programmer's Guide

You must specify a FAIL option. If you do not, ICSF returns an error message, ends abnormally, and
generates an SVC dump when attempting to load the exit. If the exit ends abnormally, KGUP also ends
abnormally.

Input
At each of the invocation points, the exit receives the address of the KGUP exit parameter block (KGXP) in
register 1. The exit does not receive a parameter list. “Entry and return specifications” on page 159 gives
a complete list of the registers on entry to the KGUP exit.

The KGUP exit can alter some of the fields in KGXP. Some fields only provide information to the exit and
cannot be changed, and some fields do not apply to particular calls to the exit.

Table 29 on page 195 describes the KGXP control block.

Table 29. KGXP Control Block Format

Offset (Dec)
Number of
Bytes Description

0 4 Block Identifier.

The name of the control block. The field must contain the character
string KGXP. The exit must not change the value and KGUP does not use
the field upon return from the exit.

4 2 Block Version Number.

The version of the control block. The field must contain the character
string 03. The exit cannot change this field and KGUP does not use this
field on return from the exit.

6 2 Block Length.

The length of the control block. The decimal value of the field is 408.
The exit cannot change the field and KGUP does not use this field on
return from the exit.

8 4 Return Code.

The return code the exit supplies upon completion. Upon entry, KGUP
initializes this field to zeros. The valid decimal return codes for each of
the invocation points are:

Record Pre- or postprocessing.
0

Normal, continue processing.
4

Reject control statement, but do not end KGUP.
8

End KGUP immediately.

KGUP pre- or postprocessing.
0

Normal, continue processing.
> 0

End KGUP immediately.

Chapter 5. Installation exits 195

Table 29. KGXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

12 1 Call Point.

Indicates the invocation point of the exit. The exit cannot change this
field and KGUP does not use this field on return from the exit. You can
determine the invocation point by the bit that is set on.
Bit

Meaning When Set On
0

KGUP preprocessing invocation.
1

KGUP postprocessing invocation.
2

Record preprocessing invocation.
3

Record postprocessing invocation.
4-7

Reserved.

13 1 Options.

Indicates the keywords specified on the KGUP control statement. The
exit cannot change this field and KGUP does not use the field upon
return from the exit. The field is used only during the record
preprocessing and postprocessing invocations. You can determine the
keywords on the control statement by the bits that are set on.
Bit

Meaning When Set On
0

LABEL with multiple values specified.
1

RANGE specified.
2

KEY specified.
3

CLEAR specified.
4

SINGLE specified.
5

NOCV specified.
6

OUTTYPE specified.
7

DOUBLEO specified.

196 z/OS: z/OS ICSF System Programmer's Guide

Table 29. KGXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

14 1 Verb Type.

Indicates the verb used on the KGUP control statement. The exit cannot
change this field and KGUP does not use this field on return from the
exit. The field is used only for the record preprocessing and record
postprocessing invocations. You can determine the verb on the control
statement by the bit that is set on.
Bit

Meaning When Set On
0

ADD
1

UPDATE
2

DELETE
3

RENAME
4

SET
5

OPKYLOAD
6–7

Reserved.

15 1 KGUP Flags.

Indicates the processing conditions encountered by KGUP at the record
postprocessing invocation. The exit cannot change this field and KGUP
does not use the field upon return from the exit. The field is not used for
the KGUP pre- or postprocessing invocations or the record
preprocessing invocation. The processing conditions can be determined
by examining whether bit 0 is set on.
Bit

Meaning When Set On
0

Non-odd parity key was imported.
1

Algorithm is AES.
2

Algorithm is DES.
3

$TRIPLEO keyword specified.
4–7

Reserved.

Chapter 5. Installation exits 197

Table 29. KGXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

16 72 Action Key.

Contains the key index accessed by the KGUP control statement. The
key index consists of the key label and type fields of a CKDS record entry
(“Debugging aids” on page 148 describes the CKDS record format in
greater detail). The key index is the first 72 bytes of a CKDS record, and
the information in the key index is used to differentiate one key from
another.

The exit can modify the field at the record preprocessing invocation. The
field is not used for the KGUP pre- or postprocessing invocation or the
record postprocessing invocation.

If the exit modifies the field, KGUP uses the modified field to access the
CKDS upon return from the exit.

Before the record preprocessing invocation, KGUP places this in this
field:

• The key label or key old label from the LABEL or key label from the
RANGE keyword of the control statement

• The key type from the TYPE keyword of the control statement

The exit cannot modify the key label, key old label, or key type.

88 72 Rename Key.

Contains the key index used to rename a key when RENAME is the verb
on the control statement. The key index consists of the key label and
type fields of a CKDS record entry.

The exit can modify the field at the record preprocessing invocation. The
field is not used for the KGUP pre- or postprocessing or record
postprocessing invocations.

If the exit modifies the field, KGUP uses the modified field to access the
CKDS upon return from the exit.

Before the record preprocessing invocation, KGUP places this
information in this field:

• The key new label from the LABEL keyword of the control statement.
• The key type from the TYPE keyword of the control statement.

The exit cannot modify the key new label or the key type.

198 z/OS: z/OS ICSF System Programmer's Guide

Table 29. KGXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

160 72 Transkey key-label1.

The key index of the TRANSKEY key-label1 on the KGUP control
statement. The key index is the key label and type of the CKDS record
entry.

The exit can modify the field at the record preprocessing invocation. The
field is not used for the KGUP pre- or postprocessing and record
postprocessing invocations.

If the exit modifies the field, KGUP uses the modified field to access the
CKDS upon return from the exit.

Before the record preprocessing invocation, KGUP places this
information in this field:

• The key-label1 from the TRANSKEY keyword of the control statement.
• The key type. The type is IMPORTER, if keys are supplied; the type is

EXPORTER, if keys are not supplied.

The exit cannot modify the key-label1 or the key type.

232 72 Transkey key-label2.

The key index of the TRANSKEY key-label2 on the KGUP control
statement. The key index is the key label and type of the CKDS record
entry.

The exit can modify the field at the record preprocessing invocation. The
field is not used for the KGUP pre- or postprocessing and record
postprocessing invocations.

If the exit modifies the field, KGUP uses the modified field to access the
CKDS upon return from the exit.

Before the record preprocessing invocation, KGUP places this
information in this field:

• The key-label2 from the TRANSKEY keyword of the control statement.
• The key type. The key type is IMPORTER, if keys are supplied; the type

is EXPORTER, if keys are not supplied.

The exit cannot modify the key-label2 or the key type.

304 8 The OUTTYPE value, if specified. If no OUTTYPE is specified, this field
set to binary zeros.

312 4 Key length in bytes.

The value supplied by the LENGTH keyword or the byte length of the key
value if the KEY option was selected.

This value is for ease of processing the key values. The exit may not
modify this value.

Chapter 5. Installation exits 199

Table 29. KGXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

316 16 Key key-value 1.

The value of the key supplied on the KGUP control statement. The 16
bytes are hexadecimal characters representing the 8-byte hexadecimal
key value. The field contains a value only if the KEY option was specified
and a key value was supplied on the control statement. You can
determine whether the KEY option was used by examining bit 2 at offset
+13 in KGXP.

If TRANSKEY was specified on the control statement, KGUP decrypts
key-value1 under the transport key specified with the TRANSKEY
keyword. If CLEAR was specified on the control statement, KGUP does
not decrypt key-value1.

The exit can modify the field at the record preprocessing invocation. This
field is not used for the KGUP pre- or postprocessing invocations or the
record postprocessing invocation. The field does not contain a value
when generating keys.

The exit is permitted to put values in this field only if a key was supplied
on the control statement. The exit-supplied value must be edited for
hexadecimal values and it then replaces the values entered on the input
control statement.

332 16 Key key-value 2.

The value of the second key supplied on the KGUP control statement.
The 16 bytes are hexadecimal characters representing the 8-byte
hexadecimal key value. The field contains a value only if the KEY option
was specified and a key value was supplied on the control statement.
You can determine whether the KEY option was used by examining bit 2
at offset +13 in KGXP.

If TRANSKEY was specified on the control statement, KGUP decrypts
the key-value 2 under the transport key specified with the TRANSKEY
keyword. If SINGLE was specified on the control statement, the key-
value 2 will be equal to the key-value. If CLEAR was specified on the
control statement, KGUP does not decrypt the key-value 2.

The exit can modify the field at the record preprocessing invocation. This
field is not used at the KGUP pre- or postprocessing invocation or the
record postprocessing invocation.

The field does not contain a value when generating keys.

The exit can put values in this field only if a key was supplied on the
control statement. The exit-supplied value must be edited for
hexadecimal values; it then replaces the values entered on the input
control statement.

200 z/OS: z/OS ICSF System Programmer's Guide

Table 29. KGXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

348 16 Key key-value 3.

The value of the third key supplied on the KGUP control statement. The
16 bytes are hexadecimal characters representing the 8-byte
hexadecimal key value. The field contains a value only if the KEY option
was specified and a key value was supplied on the control statement.
You can determine whether the KEY option was used by examining bit 2
at offset +13 in KGXP.

If TRANSKEY was specified on the control statement, KGUP decrypts
the key-value 3 under the transport key specified with the TRANSKEY
keyword. If CLEAR was specified on the control statement, KGUP does
not decrypt the key-value 3.

The exit can modify the field at the record preprocessing invocation. This
field is not used at the KGUP pre- or postprocessing invocation or the
record postprocessing invocation.

The field does not contain a value when generating keys.

The exit can put values in this field only if a key was supplied on the
control statement. The exit-supplied value must be edited for
hexadecimal values; it then replaces the values entered on the input
control statement.

364 16 Key key-value 4.

The value of the fourth key supplied on the KGUP control statement. The
16 bytes are hexadecimal characters representing the 8-byte
hexadecimal key value. The field contains a value only if the KEY option
was specified and a key value was supplied on the control statement.
You can determine whether the KEY option was used by examining bit 2
at offset +13 in KGXP.

The exit can modify the field at the record preprocessing invocation. This
field is not used at the KGUP pre- or post-processing invocation or the
record post-processing invocation. The field does not contain a value
when generating keys.

The exit can put values in this field only if a key was supplied on the
control statement. The exit-supplied value must be edited for
hexadecimal values; it then replaces the values entered on the input
control statement.

Chapter 5. Installation exits 201

Table 29. KGXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

380 4 CSFKEYS record for transkey, key-label1.

The address of the CSFKEYS data set record that is output for transkey
key-label1 on the KGUP control statement. This field only contains a
value when CLEAR keys are generated.

The exit can modify the field at the record postprocessing invocation.
KGUP sets the address to zero for the KGUP pre- or postprocessing and
record preprocessing invocations.

KGUP does not check the field upon return from the exit. Normal
CSFKEYS processing applies. KGUP uses key values on control
statement creation.

For the format of the CSFKEYS record, refer to z/OS Cryptographic
Services ICSF Administrator's Guide.

384 4 CSFKEYS record for transkey, key-label2.

The address of the CSFKEYS data set record that is output for transkey
key-label2 on the KGUP control statement. This field only contains a
value when TRANSKEY key-label2 is specified for generated keys.

The exit can modify the field at the record postprocessing invocation.
KGUP sets the address to zero for the KGUP pre- or postprocessing and
record preprocessing invocations.

KGUP does not check the field upon return from the exit. Normal
CSFKEYS processing applies. KGUP uses key values on control
statement creation.

388 4 CSFCKDS header record.

The address of the CSFCKDS data set header record.

The exit can check the field at the KGUP pre- or postprocessing
invocations. However, the exit can modify the field only at the KGUP
postprocessing invocation. KGUP sets the value of the field to zero for
the record pre- or postprocessing invocations.

The exit can modify the installation data field of the CKDS header record
(see “Debugging aids” on page 148 for a description of the CKDS header
record. Offset +196 of the CKDS header record is the installation data
field). The installation data field supplied by the exit is placed in the
CKDS header record after the KGUP postprocessing invocation returns
control to KGUP.

392 4 CSFCKDS record.

The address of the CSFCKDS data set record processed by the KGUP
control statement. KGUP sets the address to zero if the TRANSKEY
keyword has two labels of transport keys.

The exit can check the field only at the record postprocessing
invocation. KGUP sets the address to zero for the record preprocessing
and KGUP pre- or postprocessing invocations.

The exit can modify the record area if the TRANSKEY keyword does not
have two labels.

202 z/OS: z/OS ICSF System Programmer's Guide

Table 29. KGXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

396 4 RENAME CSFCKDS record.

The address of the CSFCKDS data set record processed when the
RENAME verb is used in a control statement. You can determine
whether the RENAME verb was used by examining bit 3 at offset +14 in
KGXP.

The exit can modify the field at the record postprocessing invocation.
KGUP sets the address to zero for the record preprocessing and KGUP
pre- or postprocessing invocations.

The exit can modify the record area. KGUP does not check this field
upon return from the invocation. Normal CSFCKDS processing applies.

400 4 Installation data.

The address of the data specified on the INSTDATA keyword of the
KGUP control statement. The address of the area is zero if a SET control
statement has not been processed. “The SET statement” on page 203
describes how to use the field in greater detail.

404 4 Installation exit area.

The address of an area set by the installation that is preserved across all
invocations of the exit. The first byte of the area contains the length of
the area (including the length byte). After KGUP completes, the first 64
bytes of the area are written to the SMF data set. The exit has exclusive
control of modifying this area. The area is only used as input to SMF
processing upon completion of KGUP.

The SET statement
Use the SET control statements to specify data to send to a KGUP installation exit. For a more detailed
description of the SET statement, see z/OS Cryptographic Services ICSF Administrator's Guide.

The installation data field in KGXP (offset +396) contains the address of the data SET statement specifies.
Data that is specified on a SET statement can be especially useful if you alter key entries. You may want to
keep track of the entries you change by putting the original data and the changed data in the installation
data area.

Return codes
You can pass a return code back to KGUP in the KGXP control block (offset +8). The exit can use the return
code to cause KGUP to reject control statements or to end KGUP. Return code values, in decimal, for
record pre- or postprocessing exit calls are:
Return Code

Description
0

Normal, continue processing.
4

Reject control statement, but do not end KGUP.
8

End KGUP.

All other return codes are not valid and cause KGUP to end.

Chapter 5. Installation exits 203

Return code values, in decimal, for the KGUP pre- or postprocessing invocations are:
Return Code

Description
0

Normal, continue processing.
>0

End KGUP.

204 z/OS: z/OS ICSF System Programmer's Guide

Chapter 6. Installation-defined Callable Services

This topic contains Programming Interface information.

ICSF provides callable services that perform cryptographic functions. For example, the ICSF encipher
callable service enciphers data. You call and pass parameters to a callable service from an application
program. See z/OS Cryptographic Services ICSF Application Programmer's Guide for a description of the
ICSF callable services.

Besides the callable services that ICSF provides, you can write your own callable services; these are
known as installation-defined callable services.

Attention: Only an experienced system programmer should attempt to write an installation-
defined callable service. The writing and installation of such a service require a thorough
knowledge of system programming in an z/OS environment. If, without having this knowledge, you
attempt to write or to install installation-defined callable services, you run the risk of seriously
degrading the performance of your system and causing complete system failure.

To write an installation-defined callable service, you must first write the callable service and link-edit it
into a load module. Then define the service in the installation options data set. Use the SERVICE
installation option keyword to specify a number to identify the service and the load module that contains
the service.

You must also write a service stub. To run an installation-defined callable service, you call a service stub
from your application program. The service stub connects the application program with the installation-
defined callable service. In the service stub, you specify the service number that identifies the callable
service.

During ICSF startup, ICSF loads the load module that contains the service into the ICSF address space
with the ICSF callable services. ICSF binds the service with the service number that you specified in the
installation options data set.

This topic describes how to perform these tasks:

• Write a callable service.
• Define a callable service.
• Write a service stub.

Writing a callable service
An installation-defined callable service receives parameters from the application program when the
program calls the service stub that is associated with the service. An installation-defined service can also
access information in the secondary parameter block (SPB). The address of the SPB is passed in register
0. See “Secondary parameter block” on page 175 for a description of the SPB.

The service receives control with these characteristics.

• Supervisor state
• Key 0
• APF authorized
• TCB or SRB mode
• Cross memory mode
• AR mode
• AMODE(31) or AMODE(64)
• RMODE(ANY)

© Copyright IBM Corp. 2007, 2021 205

The service can change the characteristics during their processing. However, the service must return to its
caller with the same characteristics as on entry.

You must write the services in assembler, because you are in Access Register and cross memory mode,
and the addresses of some of the parameters you may access are ALET-qualified. In particular,
parameters passed into a callable service are in the user's address space, which you can access with an
ALET of 1. See z/OS MVS Programming: Extended Addressability Guide for information about cross
memory and AR mode.

Contents of registers
The contents of the registers on entry to the callable service are:
Register 0

Address of the secondary parameter block (SPB)
Register 1

Address of the parameter list
Register 2–13

Unpredictable
Register 14

Return address
Register 15

Service entry point address

The contents of the registers on exit from the callable service are:
Register 0

Reason code
Register 1–14

Same as on entry
Register 15

Return code

Figure 5 on page 207 shows an example of entry and exit code for a generic service.

206 z/OS: z/OS ICSF System Programmer's Guide

MYSERV CSECT
MYSERV AMODE 31
MYSERV RMODE ANY
 USING *,15
 B PROLOG Branch around header text
 DC C'some text'
 DC C'compile date/time'
PROLOG EQU *
 DROP 15
 BSM R14,0
 BAKR 14,0 Save callers info on stack
 LAE 12,0 Clear access register 12
 LR 12,15 Load reg 15 into 12
PROGSTRT EQU *
 USING MYSERV,12 Set up base register
* addressability
 .
 .
 .
 Get dynamic area for program
 .. STORAGE OBTAIN or CELLPOOL or own scheme ...
 .
 .
 Free dynamic area for program
 .
 .
 .
RETURN L 0,REASON_CODE Put reason code in reg 0
 L 15,RETURN_CODE Put return code in reg 15
 PR

Figure 5. Example of a service entry and exit

The example uses the instructions BAKR and PR to replace standard linkage. With these instructions, you
no longer need to pass the save area in a register.

If the callable service ends abnormally, ICSF takes a system dump. The ICSF service functional recovery
routine (FRR) PROTECTS an installation-defined service. You can, however, write your own recovery
routine.

Security access control checking
For the ICSF-defined services, ICSF performs security access control checking to determine if the caller is
authorized to access the service and the results of the authorization check can be logged in SMF. This
checking is not performed by ICSF for installation-defined services or UDXs. Any security access control
checking must be performed by the installation-defined service or UDX itself.

Checking the parameters
For the ICSF-defined services, ICSF checks the integrity of user-passed parameters. An error in a
parameter that causes a system abend does not cause a system dump. For an installation-defined
callable service, you must perform your own integrity checking of parameters. An error in a user
parameter that results in a system abend causes a system dump. You can suppress the system dump by
setting a bit on in the SPB. To suppress the dump, set the bit on before you check the integrity of the
parameters. This bit (the SPBTERM bit) is the third bit of the flag byte at offset 16 in the SPB.

Link-editing the callable service
After you write the callable service, you need to link-edit it into a load module, and install the load module
into an APF authorized library. ICSF uses this normal search order to locate the service:

• Job pack area
• Steplib (if one exists)
• Link pack area (LPA)
• Link list (SYS1.LINKLIB concatenation)

Chapter 6. Installation-defined Callable Services 207

Defining a callable service
Use the SERVICE keyword in the installation options data set to specify information about the callable
service. ICSF uses this information at ICSF startup to enable the service. See “Steps to create the
installation options data set” on page 23 for more information about ICSF installation options.

The SERVICE keyword has this syntax:

SERVICE(service-number,load-module-name,FAIL(fail-option))

The service-number is a number that identifies the service to ICSF. The valid service numbers are 1
through 32767, inclusive. The load-module-name is the name of the module that contains the service
your installation wrote. During ICSF startup, ICSF loads the module and binds it to the service number you
specified.

Using the fail-option, you specify the action ICSF takes if the loading of the service ends abnormally. ICSF
loads all installation-defined services at ICSF startup.

Specify one of these values for the fail-option:
YES

ICSF abends if your service cannot be loaded.
NO

ICSF continues to start if your service cannot be loaded.

If the callable service ends abnormally while it is processing, ICSF does not end.

This SERVICE installation option statement identifies a specific installation-defined service to ICSF:

 SERVICE(50,KSUST,FAIL(NO))

When ICSF starts, it binds the service number 50 to the load module KSUST, which contains the callable
service you wrote. Because the fail option is NO, if your service cannot be loaded, ICSF continues to start
anyway.

Writing a service stub
Besides writing the callable service itself, you must write a service stub, which is the connection between
the application program and the installation-defined service. In an application program, you call the
service stub, which accesses the installation-defined service. The service stub can be any name you
choose to call it.

The service stub must:

• Check that ICSF is active.
• Place the service number for the installation-defined callable service into register 0.
• Call the IBM-supplied processing routine, CSFAPRPC.

CSFAPRPC is used to access the callable services on ICSF. In the service stub, you must call CSFAPRPC.
ICSF stores the address of the CSFAPRPC entry point in the CCVTPRPC field of the ICSF cryptographic
communication vector table (CCVT). If running in a CICS address space, then, after you call CSFVCCPP,
the system calls the callable service that corresponds to the service number in register 0. “The
Cryptographic Communication Vector Table (CCVT)” on page 357 describes the format of the CCVT.

The contents of the registers on entry to the service stub are:
Register 0

Unpredictable
Register 1

Address of the parameter list
Register 2–13

Unpredictable

208 z/OS: z/OS ICSF System Programmer's Guide

Register 14
Return address

Register 15
Service stub entry point address

The contents of the registers on exit from the service stub are:
Register 0

Reason code
Register 1–14

Same as on entry
Register 15

Return code

To run an installation-defined callable service, an application program calls the service stub. You must
link-edit the service stub with the application program that calls the service stub. Any application program
that calls a service stub must be link-edited with the service stub.

To call an installation-defined service from an application program, use this statement:

 CALL <service-stub-name> <service-parameters>

The service-stub-name is the name of the service stub for the installation-defined callable service. The
service-parameters are the parameters you want to pass to the installation-defined service. You supply
the parameters according to the syntax of the programming language that you use to write the application
program.

Example of a service stub
Figure 6 on page 210 through Figure 10 on page 214 show an example of a service stub for an
installation-defined callable service.

Chapter 6. Installation-defined Callable Services 209

**** START OF SPECIFICATIONS ***
* *
* MODULE NAME = CSFGEN *
* DESCRIPTIVE NAME = SERVICE STUB *
* *
* FUNCTION = *
* THIS IS A SAMPLE SERVICE STUB. IT IS MEANT TO BE LINKEDITED *
* WITH THE APPLICATION AND ENTERED VIA A CALL CSFGEN. THIS STUB *
* CAUSES THE EXECUTION OF THE SERVICE WITH SERVICE NUMBER = 50 *
* (DECIMAL). *
* MODULE TYPE = ASSEMBLER *
* PROCESSOR = ASSEMBLER *
* MODULE SIZE = ONE BASE REGISTER *
* *
**** END OF SPECIFICATIONS ***
 CSFGEN START 0
 GENSNUM EQU 50
 CSFGEN CSECT
 CSFGEN AMODE 31
 CSFGEN RMODE ANY
 MAINENT DS 0H
 USING *,R15
 LAE R15,0(R15,0)
 L R15,=A(CICSTEST)
 BAKR 0,R15 PR from CICSTEST will restore GPRs
 LTR R15,R15
 BC 2,NOCICS
 *
YESCICS DS 0H
 SAC 0
 STM R14,R12,12(R13)
 LR R12,R15
 DROP R15
 USING MAINENT,R12
 LR R3,R0
 B NORMAL
 *
 NOCICS DS 0H
 USING MAINENT,R12
 BSM R14,0
 BAKR R14,0
 LAE R12,0
 LR R12,R15
 SLR R13,R13

 * At this point, R0 must contain the service number.
 * If we are to call the TRUE, R13 is non-zero
 * R1 points to the caller's parameter list.

 NORMAL DS 0H
 LA R0,GENSNUM R0 gets service number
 SLR R10_ZERO,R10_ZERO
 LR RC,R10_ZERO
 L R2,CVTPTR
 USING CVT,R2
 L R2,CVTABEND

Figure 6. Example of a service stub (1 of 5)

210 z/OS: z/OS ICSF System Programmer's Guide

 CLR R2,R10_ZERO
 BC 8,NOICSF
 USING SCVTSECT,R2
 L R2,SCVTCCVT
 CLR R2,R10_ZERO
 BC 8,NOICSF
 USING CCVT,R2
 TM CCVTSFG1,B'00110000' IS ICSF ACTIVE
 BC 1,YESICSF
NOICSF LA RC,12 Set return code to 12 decimal
 L R7,RETURN_CODE_PTR(,R1)
 ST RC,RETURN_CODE(,R7)
 SLR R0,R0
 L R7,REASON_CODE_PTR(,R1)
 ST R0,REASON_CODE(,R7)
 B FINISHED
YESICSF DS 0H
**
* Note that, if we're in CICS, the prolog code pointed R3 at the AFCB
* and R13 at the caller's savearea--they're still pointing. Also, R0
* contains the service number, with the high order bit ON if the TRUE
* has been tried and found wanting. In this last case, CSFVCCPP will
* check the high order bit and not attempt to call the TRUE.
* If R13 is zero, we're using the linkage stack. That means we can
* call CSFAPRPC.
* If R13 is not zero, we're using non-stack linkage. That means the
* caller's savearea will be used. CSFVCCPP uses this kind of linkage.
* But note that CSFVCCPP will not return here. Instead, it will return
* directly to the caller--that is, to the owner of the only save
* area around.
 **
 CLR R13,R10_ZERO
 BC 8,EXECPRPC
 L R15,CCVTPRPD
 BALR R14,R15
LR RC,R15
 B FINISHED
 EXECPRPC L R15,CCVTPRPC
 BALR R14,R15
 LR RC,R15
 FINISHED DS 0H
 *
 **
 * This routine uses the linkage stack to save the caller's regs
 * if this is not a CICS environment. In CICS, it uses the save
 * area pointed to by register 13. So the epilog code takes one
 * of two forms. If this is CICS (i.e. if R13 is non-zero),
 * return is via LM and BR 14. If this is not CICS, return is
 * via PR.
 *
 * On return, the PR of ESA linkage does not restore registers
 * 0, 1, 14 and 15. In the LM of normal BR 14 linkage, however,
 * everything but 13 gets restored. Since this routine has no
 * autodata, there's no way to pass back return and reason codes
 * unless we leave 0 and 15 intact. The solution is to deviate
 * slightly from normal BR 14 linkage and restore only registers
 * 1 through 12 and 14.
 **
 LTR R13,R13
 BC 8,ENDNOCICS

Figure 7. Example of a service stub (2 of 5)

Chapter 6. Installation-defined Callable Services 211

ENDCICS LR R15,RC
 L R14,SAVE14(,R13)
 LM R1,R12,24(R13)
 BR R14
 *
EDNOCICS DS 0H
 LR R15,RC
 LA R7,12
 CR R15,R7
 BNE ENDSVC
 LA R7,16
 CR R0,R7
 BNE ENDSVC
 L R7,RETURN_CODE_PTR(,R1)
 ST R15,RETURN_CODE(,R7)
 L R7,REASON_CODE_PTR(,R1)
 ST R0,REASON_CODE(,R7)
ENDSVC LR R15,RC
 PR
 **
 **
 ** CICSTEST: Decides whether this is a CICS environment
 **
 **
 CICSTEST DS 0H
 LAE R12,0 Clear AR 12
 LR R12,R15 Addressability via R12
 USING CICSTEST,R12
 L R15,=A(CSFGEN) R15 gets caller's base reg
 L R2,CVTPTR GET CVT POINTER
 USING CVT,R2
 L R2,CVTABEND AND SECONDARY CVT POINTER
 USING SCVTSECT,R2
 L R2,SCVTCCVT POINT TO CSF CCVT
 LTR R2,R2 IS CRYPTO INSTALLED?
 BZ RETRN IF NOT, GO HOME
 USING CCVT,R2
 TM CCVTSFG1,B'00110000' IS ICSF ACTIVE
 BNO RETRN IF NOT , GO HOME

 * Check for wait list routine
 *
 TM CCVTCICS,B'10000000' Q. CCVTPRPA ON?
 BZ RETRN no---No CICS capability
 TM CCVTCICS,B'01000000' Q. CCVTCKWL ON?
 BZ CKWLHERE no---use imbedded routine
 * yes--use installed routine
 LA R0,GENSNUM R0 gets service number
 LR R3,R1 R3 saves R1
 LR R4,R14 R4 saves R14
 LR R5,R15 R5 saves R15
 L R15,CCVTCKWL R15 gets routine address
 BALR R14,R15 Go check for CICS
 LR R0,R15 Save return code in R0
 LR R15,R5 Restore R15
 LR R14,R4 Restore R14
 LR R1,R3 Restore R1
 LTR R0,R0 Q. CICS?
 BZ RETRN no---return
 * yes--pass info along
 O R15,M_CICS Enable high bit of R15 to CICS
 B RETRN Return

Figure 8. Example of a service stub (3 of 5)

212 z/OS: z/OS ICSF System Programmer's Guide

 * Cannot use installed routine. Use imbedded routine
 *
 CKWLHERE DS 0H Imbedded check for TRUE routine
 SLR R0,R0 Init R0 to 0
 CPYA R8,R12 Zero AR 8
 SLR R8,R8 Init R8 to 0
 USING PSA,R8
 L R8,PSATOLD R8->TCB
 USING TCB,R8
 LTR R8,R8 Q. Is there a TCB?
 BC 8,RETRN no---return
 * yes--check state and key
 CPYA R11,R12 Zero AR 11
 LA R11,1 Get PSW state and key in R6
 ESTA R6,R11
 LR R7,R6 Copy of state & key in R7
 N R7,M_KEY Q. problem key?
 BZ RETRN no---return
 * yes--check state
 N R6,M_STATE Q. problem state?
 BZ RETRN no---return
 * yes--get the CICS eye-catcher
 LA R6,2 Set ARs 6 and 8 to home
 SAR R6,R6
 SAR R8,R6
 L R8,TCBEXT2 R8->TCB extension
 USING TCBXTNT2,R8
 ICM R4,B'1111',TCBCAUF R4 gets AFCX address
 * Q. Address there?
 BZ RETRN no---return
 * yes--check eye-catch
 CLC 0(4,R4),CICS_EYE Q. CICS?
 BNE RETRN no---return
 * yes--pass info along
 LR R0,R4 R0 gets the AFCX pointer
 O R15,M_CICS Enable high order bit of R15
 RETRN DS 0H
 DROP R12 Free R12
 PR Return from CICSTEST subroutine
 *
 LTORG
 DS 0D
 *
 GENSDATA DS 0F
 R10_ZERO EQU 10
 RC EQU 05
 R0 EQU 0
 R1 EQU 1
 R2 EQU 2
 R3 EQU 3
 R4 EQU 4
 R5 EQU 5
 R6 EQU 6
 R7 EQU 7
 R8 EQU 8
 R9 EQU 9
 R10 EQU 10
 R11 EQU 11
 R12 EQU 12
 R13 EQU 13
 R14 EQU 14
 R15 EQU 15
 *

Figure 9. Example of a service stub (4 of 5)

Chapter 6. Installation-defined Callable Services 213

 INPUT_PARMS EQU 0,8,C'C'
 RETURN_CODE_PTR EQU INPUT_PARMS,4,C'A'
 REASON_CODE_PTR EQU INPUT_PARMS+4,4,C'A'
 RETURN_CODE EQU 0,4,C'F'
 REASON_CODE EQU 0,4,C'F'
 *
 SAVAREA EQU 0,72,C'C'
 SAVE14 EQU SAVAREA+12,4,C'A'
 SAVE01 EQU SAVAREA+24,4,C'A'
 SCVTSPTR EQU CVTABEND,4,C'F'
 TCBPTR EQU PSATOLD,4,C'F'
 DS 0D
 *
 DS 0F Align
 M_KEY DC X'00800000' Problem key mask
 M_STATE DC X'00010000' Problem state mask
 M_NOCICS DC X'7FFFFFFF' Not-CICS mask
 M_CICS DC X'80000000' Yes-CICS mask
 DS 0D
 CICS_EYE DC CL4'AFCX' CICS eye catcher
 *
 IHAPSA
 TITLE 'DSECT CVT'
 CVT DSECT=YES
 TITLE 'DSECT SCVT'
 IHASCVT DSECT=YES
 TITLE 'DSECT TCB'
 IKJTCB
 TITLE 'DSECT CCVT'
 CSFCCVT
 *
 LA R7,12
 CR R15,R7
 BNE ENDGSVC
 LA R7,16
 CR R0,R7
 BNE ENDGSVC
 L R7,RETURN_CODE_PTR(,R1)
 ST R15,RETURN_CODE(,R7)
 L R7,REASON_CODE_PTR(,R1)
 ST R0,REASON_CODE(,R7)
 ENDGSVC DS 0H

 END

Figure 10. Example of a service stub (5 of 5)

In Figure 6 on page 210, the service stub, CSFGEN, checks that ICSF is active, places the service number
50 into register 0, and calls CSFAPRPC.

The service number 50 (in the case of this example) must be bound to the installation-defined service by
using the SERVICE keyword in the installation options data set. The service number is bound to the
service when ICSF interprets the SERVICE installation option statement and loads the service at ICSF
startup. To run the callable service that is associated with service number 50, call the service stub
CSFGEN from an application program.

For flexibility, to create a service stub for a different installation-defined callable service, you can copy an
existing service stub and just change the service number that you load into register 0.

214 z/OS: z/OS ICSF System Programmer's Guide

Chapter 7. Converting a CKDS from fixed length to
variable length record format

ICSF provides a CKDS conversion program, CSFCNV2, that converts a fixed length record format CKDS to
a variable length record format. There will be no changes to the key token in the CKDS record. Only the
format of the record will be changed.

Note: There are three formats of the CKDS:

• The original fixed-length record format.
• The variable-length record format (introduced in HCR7780).
• The KDSR variable-length record format (introduced in ICSF FMID HCR77A1).

The CSFCNV2 utility converts a fixed-length format CKDS to a variable-length format. To convert a fixed-
length or variable-length format CKDS to the KDSR format, see “Migrating to the common record format
(KDSR) key data set” on page 83.

You can also use the CSFCNV2 utility to rewrap encrypted DES values in the CKDS. For more information
on this capability of the CSFCNV2 utility, refer to z/OS Cryptographic Services ICSF Administrator's Guide.

There is no conversion from variable length to fixed length records.

You run the conversion utility program by submitting a batch job. On the EXEC statement, specify
PGM=CSFCNV2.

This example is a JCL that runs the conversion program:

//CKDSCNV2 EXEC PGM=CSFCNV2,PARM='FORMAT,OLD.CKDS,NEW.CKDS'

Where:
OLD.CKDS

The fixed length record format CKDS to be converted. This is the source CKDS for the conversion.
NEW.CKDS

An empty disk copy of a variable length record format CKDS. This is the CKDS into which the
conversion utility writes the converted records. The data set must be defined and empty before you
run the conversion program.

Refer to the SYS1.SAMPLIB CSFCKD2 member sample described in “Steps to create the CKDS” on page
14 for example JCL that defines a VSAM CKDS for variable length records.

The CSFV0560 message in the joblog will indicate the results of processing.
Return Code

Meaning
0

Process successful.
4

Minor error occurred.
8

RACF authorization check failed.
12

Process unsuccessful.
60 or 92

CKDS processing has failed. A return code 60 indicates the error was detected in the new KDS. A
return code 92 indicates the error was detected with the old KDS.

© Copyright IBM Corp. 2007, 2021 215

When the program is invoked from another program, the invoking program receives the reason code in
General Register 0 along with the return code in General Register 15. The following list describes the
meaning of the reason codes. If a particular reason code is not listed, refer to the listing of ICSF and TSS
return and reason codes in the z/OS Cryptographic Services ICSF Application Programmer's Guide.

Return code 0 has this reason code:
Reason Code

Meaning
36132

CKDS reencipher/Change MK processed only tokens encrypted under the DES master key.

Return code 4 has these reason codes:
Reason Code

Meaning
0

Parameters are incorrect.
4004

Rewrapping is not allowed for one or more keys.
36112

CKDS conversion completed successfully but some tokens could not be rewrapped because the
control vector prohibited rewrapping from the enhanced wrapping method.

36164
Input CKDS is already in the variable-length record format. No conversion is necessary.

Return code 8 has this reason code:
Reason Code

Meaning
16000

Invoker has insufficient RACF access authority to perform function.

Return code 12 has these reason codes:
Reason Code

Meaning
0

ICSF has not been started
11060

The required cryptographic coprocessor was not active or the master key has not been set
36000

Unable to change master key. Check hardware status.
36008

Crypto master key register or registers in improper state.
36020

Input CKDS is empty or not initialized (authentication pattern in the control record is invalid).
36036

The new master key register for Coprocessor 1 (C1) is not full, but C0 is ready and the current master
key is valid.

36040
The new master key register for C0 is not full, but C1 is ready and the current master key is valid.

36044
The master key authentication pattern for the CKDS does not match the authentication pattern of the
coprocessors, which are not equal.

216 z/OS: z/OS ICSF System Programmer's Guide

36048
The master key authentication pattern for the CKDS does not match the authentication pattern of
either of the coprocessors, which are not equal.

36052
A valid new master key is present in C0, but its authentication pattern does not match that of C1 or
the CKDS, which are equal.

36056
A valid new master key is present in C1, but its authentication pattern does not match that of C0 or
the CKDS, which are equal.

36060
The new master key register or registers are not full.

36064
Both new master key registers are full but not equal.

36068
The input KDS is not enciphered under the current master key.

36076
The new master key register for C0 is not full, but the CPUs are online.

36080
The new master key register for C1 is not full, but the CPUs are online.

36084
The master key register cannot be changed since ICSF is running in compatibility mode.

36104
Option not available. There were no Cryptographic Coprocessors available to perform the service that
was attempted.

36108
PKA callable services are enabled, and the PKDS is the active PKDS as specified in the options data
set.

36120
The CKDS is unusable. The CKDS does not support record level authentication.

36124
The CKDS is unusable. The CKDS only supports encrypted AES keys and encrypted DES support is
required.

36128
The CKDS is unusable. The CKDS does not support encrypted DES keys which is required.

36160
The attempt to reencipher the CKDS failed because there is an enhanced token in the CKDS.

36168
A CKDS has an invalid LRECL value for the requested function. For wrapping, the input and output
CKDS LRECLs must be the same.

36172
The level of hardware required to perform the operation is not available.

Return code 60 or 92 has these reason codes:
Reason Code

Meaning
3078

The CKDS was created with an unsupported LRECL.
5896

The CKDS does not exist.
6008

A service routine has failed.

Chapter 7. Converting a CKDS from fixed length to variable length record format 217

The service routines that may be called are:
CSFMGN

MAC generation
CSFMVR

MAC verification
CSFMKVR

Master key verification

6012
The single-record, read-write installation exit (CSFSRRW) returned a return code greater than 4.

6016
An I/O error occurred reading or writing the CKDS.

6020
The CSFSRRW installation exit abended and the installation options EXIT keyword specifies that the
invoking service should end.

6024
The CSFSRRW installation exit abended and the installation options EXIT keyword specifies that ICSF
should end.

6028
The CKDS access routine could not establish the ESTAE environment.

6040
The CSFSRRW installation exit could not be loaded and is required.

6044
Information necessary to set up CSFSRRW installation exit processing could not be obtained.

6048
The system keys cannot be found while attempting to write a complete CKDS data set.

6052
For a write CKDS record request, the current master key verification pattern (MKVP) does not match
the CKDS header record MKVP.

6056
The output CKDS is not empty.

Note: It is possible that you will receive MVS reason codes rather than ICSF reason codes, for example, if
the reason code indicates a dynamic allocation failure. For an explanation of Dynamic Allocation reason
codes, see z/OS MVS Programming: Authorized Assembler Services Guide.

218 z/OS: z/OS ICSF System Programmer's Guide

Chapter 8. Migration from PCF to z/OS ICSF

If your installation uses the cryptographic product, Programmed Cryptographic Facility (PCF), ICSF helps
you migrate PCF applications to ICSF. You can run PCF applications on ICSF to gain the enhanced
performance and availability of ICSF and to test ICSF. Eventually, you should convert these applications to
use ICSF services, rather than the PCF macros.

During migration, you can run PCF applications on ICSF because ICSF continues to support the PCF
macros (GENKEY, RETKEY, EMK, and CIPHER). If GENKEY or RETKEY macro exits exist, you should
reevaluate their applicability to ICSF. If an exit performs a necessary function, you need to rewrite the exit
for ICSF. Exits exist for the compatibility services on ICSF.

If a PCF application uses a key in the PCF cryptographic key data set, you must convert the key to an ICSF
cryptographic key data set before you run the PCF application on ICSF. ICSF provides a program to make
this conversion.

Running PCF and z/OS ICSF on the same system
You can run PCF and ICSF simultaneously on the same z/OS system or separately in three different
modes. You can run ICSF in compatibility, coexistence, or noncompatibility mode.

In compatibility mode, you can run either PCF or ICSF, but you cannot run them simultaneously on the
same z/OS system. You can continue to run PCF applications on PCF or you can run PCF applications on
ICSF. ICSF supports the PCF macros that the PCF applications call. However, you cannot run the PCF key
generator utility program (KGUP) on ICSF. You do not have to reassemble PCF applications to run the
applications on ICSF.

In coexistence mode, you can run PCF and ICSF simultaneously on the same z/OS system. You can
continue to run a PCF application on PCF or you can reassemble the PCF application to run on ICSF. In this
mode, ICSF supports the PCF macros when a reassembled PCF application calls these macros.

In noncompatibility mode, you can run PCF and ICSF simultaneously and independently on the same z/OS
system. You can run PCF applications on PCF and ICSF applications on ICSF. You cannot run PCF
applications on ICSF, because ICSF does not support the PCF macros in this mode.

You can run PCF simultaneously and independently in coexistence and noncompatibility mode. Therefore,
in these modes, you can run PCF KGUP on PCF while running ICSF. The PCF KGUP updates keys on a PCF
CKDS.

The ICSF installation option COMPAT(YES, COEXIST or NO) allows you to specify which mode you want
ICSF to run in. You specify COMPAT(YES) for compatibility mode, COMPAT(COEXIST) for coexistence
mode, and COMPAT(NO) for noncompatibility mode. See “Steps to create the installation options data
set” on page 23 for information about creating the installation options data set and “Parameters in the
installation options data set” on page 33 for details about these options.

Running in compatibility mode
In compatibility mode, you can run a PCF application on ICSF without reassembling the application. A PCF
application running on ICSF can still use PCF macros, because ICSF supports these macros. The PCF
application gains the enhanced performance, reliability, and availability of ICSF.

You cannot run PCF and ICSF simultaneously on the same z/OS system in compatibility mode. If you start
PCF, you must stop PCF before you can start ICSF. If you start ICSF, you must stop ICSF before you can
start PCF.

A PCF application may have used keys on the PCF cryptographic key data set (CKDS). When you run the
application on ICSF, these keys must be in the ICSF CKDS. The format of a key entry on the PCF CKDS
differs from the format of a key entry on the ICSF CKDS. Therefore, you need to run a conversion program

© Copyright IBM Corp. 2007, 2021 219

to convert the PCF CKDS entries and place the entries in the ICSF CKDS. See “Converting a PCF CKDS to
ICSF format” on page 222 for a description of how to convert a PCF CKDS.

For encryption, ICSF supports the Data Encryption Standard (DES).

PCF macros receive identical error return codes if they run on ICSF or PCF, with one exception. If a key is
installed on the ICSF CKDS with the correct label but with the wrong key type, an attempt to use that key
by RETKEY or GENKEY results in a return code of 8 from PCF. This indicates that the key was not of the
correct type. ICSF issues return code 12, indicating that it could not find the key. Ensure that PCF LOCAL
or CROSS 1 keys are installed in the ICSF CKDS as EXPORTER keys. Also, ensure that REMOTE and CROSS
2 keys are installed in the ICSF CKDS as IMPORTER keys.

In compatibility mode, the safest method for changing the master key is to re-IPL the system. To change
the master key in compatibility mode, see “Changing the DES master key in compatibility or coexistence
mode” on page 221.

Note: To use AMS REPRO encryption, you need to run ICSF in compatibility mode.

Running in coexistence mode
In coexistence mode, you can run ICSF and PCF simultaneously on the same z/OS system and run a PCF
application on PCF or on ICSF. A PCF application running on ICSF gains the enhanced performance,
reliability, and availability of ICSF.

A PCF application running on ICSF can still use PCF macros, because ICSF supports these macros. ICSF
ships changed PCF macros in SAMPLIB that run only on ICSF. Because these changed PCF macros already
exist unchanged on PCF, the changed PCF macros shipped with ICSF are named differently.

On ICSF, in SAMPLIB:

• The changed PCF EMK macro is named CSFEMK.
• The changed PCF CIPHER macro is named CSFCIPH.
• The changed PCF RETKEY macro is named CSFRKY.
• The changed PCF GENKEY macro is named CSFGKY.

You can rename these macros to the PCF names when you want to run a PCF application on ICSF.

To run a PCF application on ICSF, you must:

• Rename the changed PCF macro shipped in ICSF SAMPLIB to the appropriate PCF name.
• Place the macro in the appropriate macro library.
• Reassemble the PCF application against the changed PCF macro.

Then the application can run only on ICSF. To run a PCF application on PCF, just run the application
without reassembling the application.

During migration, you can start ICSF and start PCF so that both products are running simultaneously. If
you want to run a PCF application using the PCF macros on PCF, do not reassemble the application. If you
want to run a PCF application using the changed PCF macros on ICSF, reassemble the application against
the changed macros. Coexistence mode enables you to run the products simultaneously and choose
whether to run a PCF application on PCF or ICSF.

A PCF application can use keys on the PCF CKDS. When you run the application on ICSF, those keys must
be in the ICSF CKDS. The format of a key entry on the PCF CKDS differs from the format of a key entry on
the ICSF CKDS. Therefore, you need to run a conversion program to convert the PCF CKDS entries and
place the entries in the ICSF CKDS. See “Converting a PCF CKDS to ICSF format” on page 222 for a
description of how to convert a PCF CKDS.

In coexistence mode, the safest method for changing the master key is to re-IPL the system. See
“Changing the DES master key in compatibility or coexistence mode” on page 221 for a description of the
process used to change the master key in coexistence mode.

220 z/OS: z/OS ICSF System Programmer's Guide

Changing the DES master key in compatibility or coexistence mode
In compatibility and coexistence modes, the safest way to activate the DES master key after changing it is
to re-IPL the system. This process is different from the usual process for entering and activating a master
key. For information about changing the master key, see z/OS Cryptographic Services ICSF Administrator's
Guide.

A re-IPL ensures that a program does not access a cryptographic service with a key that is encrypted
under a different master key. If a program is using an operational key, the program either re-creates the
key or imports the key again.

In compatibility or coexistence mode, the ICSF administrator can use the ICSF panels to enter the key
value into the new master key register. However, the master key cannot be activated using the panels in
compatibility or coexistence mode. The value entered remains in the new master key register until you re-
IPL the system. (In noncompatibility mode, the ICSF administrator can use the ICSF panels to enter the
key value into the new master key register and to activate the master key.)

If the new master key is different than the current master key, the ICSF administrator must reencipher the
CKDS under this new master key. To do this, choose the REENCIPHER CKDS option on the master key
management panel. This reenciphers a CKDS under the master key in the new master key register.
Reencipher all the disk copies of the CKDSs, and leave the ICSF panels without changing the master key.

Then re-IPL the system and restart ICSF. In the installation options data set, the CKDSN installation
option must specify a disk copy of the CKDS that is reenciphered under the new master key. When ICSF
starts again, it detects that the current master key is not the one that enciphered the CKDS that is
specified in the installation options data set. ICSF detects that the CKDS is enciphered under the new
master key and makes that master key active.

If your installation requires 24-hour availability and it is not possible to re-IPL the system, an alternative
method is to stop all cryptographic applications, especially those using PCF macros. This helps eliminate
inadvertent use of operational keys that are encrypted under the old master key. After you restart CSF,
applications using an operational key can either re-create or reimport the key.

Running in noncompatibility mode
In noncompatibility mode PCF and ICSF can run simultaneously and independently. You can run both
ICSF and PCF at the same time. Just start one and then the other. Both ICSF and PCF run completely
separate from each other. Each has its own applications and each uses its own services and CKDS.

You cannot run a PCF application on ICSF, even if you reassemble it. If you run an application on ICSF that
calls a PCF macro, the application ends abnormally, because ICSF does not support the PCF macros in
noncompatibility mode.

Because each product runs separately, neither product loses any function in exchange for compatibility.
When ICSF is in compatibility or coexistence mode, you can no longer change the master key dynamically.
In noncompatibility mode, this function is still possible. Therefore, except for when your installation is
migrating to ICSF, you probably want to run ICSF in noncompatibility mode.

Note: When you initialize ICSF for the first time, noncompatibility mode must be active.

Specifying compatibility modes during migration
The process and duration to migrate from PCF to ICSF depend on your installation. You can use different
modes in different stages of migration. To change modes, change the COMPAT option in the installation
options data set and restart ICSF. When you complete migration to ICSF, you can run in noncompatibility
mode to use the full function of ICSF.

When you first install an ICSF system, you can continue to run PCF for production and just test ICSF.
Because you are running the products separately but simultaneously on the same z/OS system, you can
run in noncompatibility or coexistence mode. To run in compatibility mode, you need more than one z/OS
system. You can run the test applications on ICSF on one z/OS system while you run your production on
PCF on another z/OS system.

Chapter 8. Migration from PCF to z/OS ICSF 221

When you begin testing ICSF, you can run existing applications in either compatibility mode or
coexistence mode to test the PCF macros on ICSF. After you run the test applications, you may want to
bring up production using PCF applications on ICSF. When you bring over PCF applications to ICSF, you
can run in coexistence mode. In this mode, you can run an application on PCF and then reassemble the
application to run the application on ICSF.

While, or after, you bring PCF applications into production on ICSF, you can run test applications that call
ICSF services. You can then convert the applications that call PCF macros to applications that call the
ICSF services. The ICSF services provide enhanced key separation, performance, and function. After you
convert all your PCF applications to ICSF applications, you can activate noncompatibility mode and have
the full function of ICSF.

Converting a PCF CKDS to ICSF format
During migration, you may need to convert a PCF CKDS into ICSF CKDS format if:

• PCF applications running on ICSF use keys stored in a PCF CKDS.
• Your installation uses the PCF key generator utility program to create keys and uses ICSF for other

cryptographic operations. To use the keys in ICSF applications, you must convert the PCF CKDS.

ICSF provides a PCF conversion program, CSFCONV, that converts a PCF CKDS into an ICSF CKDS. The
conversion program runs with certain defaults. The program converts all the entries in a PCF CKDS and
converts the PCF key types into certain corresponding ICSF key types. You can use the conversion
program override file to instruct the conversion program not to convert certain entries. You can also tell
the conversion program to convert a PCF key type into a different ICSF key type than the default.

These topics describe how:

• The conversion program runs with certain defaults
• To use the override file to make it run differently
• To run the conversion program

How the PCF conversion program runs
You can run the PCF conversion program only after you initialize the master key and CKDS for ICSF.

When the conversion program processes a PCF CKDS, the program duplicates the single length key values
to create double length keys.

The conversion program merges the PCF CKDS with an input ICSF CKDS. The input ICSF CKDS is an
existing disk copy of an ICSF CKDS. The input ICSF CKDS must contain a header record. For information
about initializing an ICSF CKDS, see z/OS Cryptographic Services ICSF Administrator's Guide.

The PCF conversion program places the input ICSF CKDS entries and the converted PCF entries into an
output CKDS. You must create an empty VSAM data set to be the output CKDS before running the
conversion program. See “Steps to create the CKDS” on page 14 for information about creating the data
set.

The PCF conversion program converts all the entries in a PCF CKDS. When you run the PCF conversion
program, the program does these conversions of PCF key types into ICSF key types:

• Converts each PCF local key entry into an ICSF NOCV exporter key-encrypting key entry.
• Converts each PCF remote key entry into an ICSF NOCV importer key-encrypting key entry.
• Converts each PCF cross key entry into two ICSF key entries: an NOCV exporter key-encrypting key and

an NOCV importer key-encrypting key.

You use the override file to not convert all the entries in a PCF CKDS or to convert a PCF key into a
different key type than the default key type.

When the PCF conversion program converts a PCF entry, the program places any installation data from the
installation data field of the PCF entry into the ICSF entry. You can use the override file to place different
installation data into the ICSF entry.

222 z/OS: z/OS ICSF System Programmer's Guide

Note: ICSF copies any installation data in the input CSF CKDS header record into the output ICSF CKDS
header record.

As the conversion program reads the PCF CKDS, the input ICSF CKDS, and the override file, the program
places key entries into a virtual image of the output ICSF CKDS. When the virtual image CKDS is complete,
the conversion program reenciphers the key values of the PCF entries from under the PCF master key to
under the ICSF master key. The conversion program places the reenciphered entries into the actual
output CKDS.

As the conversion program creates the virtual image ICSF CKDS, the conversion program takes
information from the PCF entry and possibly the override file. For each PCF entry, the conversion program
checks if its key label exists in the override file. If the label does exist in the override file, the conversion
program takes the action that is specified in the override file. The program either converts or bypasses the
entry. If the key label does not exist in the override file, ICSF converts the entry.

The conversion program compares the converted PCF entries by label and type with the ICSF entries that
already exist in the input ICSF CKDS. If there is a match, the conversion program replaces the key value
from the converted entry of the PCF source into the virtual image CKDS. If there is not a match, the
conversion program converts each PCF entry after checking the override file. If the label matches and the
type does not, the conversion program checks to see if the type requires a unique label. If a unique label
is not required, the conversion program converts the PCF entry after checking the override file. If a unique
label is required, the conversion program does not convert the PCF entry and issues an error message. If
the record type is DATA, DATAXLAT, MAC, MACVER, or NULL the CKDS record requires a unique label. The
CKDS record also requires a unique label if the record has ever been updated by the dynamic CKDS
update callable services. The conversion program also places all the input ICSF CKDS entries into the
virtual image CKDS.

Calling installation exits during conversion
You can call two installation exits during conversion program processing: the conversion program exit
(CSFCONVX) and the single-record, read-write exit (CSFSRRW). The conversion program calls the exit at
three different times: before, during, and after conversion program processing. See Chapter 5,
“Installation exits,” on page 157 for a description of the conversion program and single-record, read-write
exit control blocks.

The conversion program calls the CSFCONVX exit after you submit the conversion program job, but before
the program actually begins processing. At this point, you can use the exit to change the output ICSF
CKDS header record installation data field.

The conversion program also calls the CSFCONVX exit during processing as the conversion program
completes the virtual image ICSF CKDS, but before the conversion program reenciphers the key values.
The conversion program calls the exit as it writes each record to the virtual image ICSF CKDS. At this
point, you can use the exit to specify that the conversion program not place an entry into the output ICSF
CKDS.

The conversion program also calls the CSFCONVX exit after the conversion program completes
processing. At this point, you can use the exit to change the output ICSF CKDS header record installation
data field.

As the conversion program reads the records from the virtual image ICSF CKDS to the actual output ICSF
CKDS, it calls the single-record, read-write exit. The conversion program calls the single-record, read-
write exit as it writes each record to the output ICSF CKDS. You can use this exit to specify that the
conversion program not place an entry into the output ICSF CKDS.

The conversion program writes every entry from the PCF CKDS and input ICSF CKDS into the output ICSF
CKDS unless an override record or installation exit indicates that the conversion program should bypass
the entry from the PCF CKDS.

Using the conversion program override file
The conversion program converts all entries in a PCF CKDS into ICSF entries. The conversion program also
converts each type of PCF key into a specific ICSF key type. If you want the conversion program to bypass

Chapter 8. Migration from PCF to z/OS ICSF 223

certain key entries or convert a specific key or key type differently than it does by default, use the override
file.

By specifying override records, you can have the conversion program:

• Bypass conversion of key entries.
• Include information in key entries.
• Convert key types differently than it does by default.

These actions can relate to entries explicitly identified with a key label or entries that are identified
globally.

You specify information in certain fields in an override record and leave other fields blank, depending on
the action you want the conversion program to take. You can specify a global record affecting more than
one PCF CKDS entry or a record that affects only one PCF CKDS entry.

All the override data set records should be in ascending sequence by key label and old key type. If you use
global entries, they must be the initial entries in the override record. Table 30 on page 224 shows the
syntax of a record in the override file.

Note: All the fields should contain character values and be left-justified.

If you specify a key label in an override record, the conversion program processes the key entry identified
by that key label. If you do not specify a key label in an override record, you are using a global override
record. The conversion program processes all the key labels that pertain to the information specified by
the override file.

You can use a global override record to affect all the entries in a CKDS and then use override records to
explicitly affect entries you did not want to have that global override record affect.

Table 30. Format of Records in the Override File

Column Length Description

1 8 Key Label

The key label of the PCF entry you want to convert

The field can have these values:

• Blanks
• A key label existing in the PCF CKDS that you want to convert

9 1 This field must be blank.

10 8 Old Key Type

The key type of the key entry you want to convert in the PCF CKDS.

The field can have these values:

• Blanks
• LOCAL
• REMOTE

18 1 This field must be blank.

224 z/OS: z/OS ICSF System Programmer's Guide

Table 30. Format of Records in the Override File (continued)

Column Length Description

19 8 New Key Type

The key type that you want the converted key entry to be in the ICSF
CKDS. The master key variant for the key type enciphers the key in the
ICSF CKDS entry that the conversion program creates.

The field can have these values:

• Blanks
• OPINENC
• EXPORTER
• IPINENC
• IMPORTER

27 1 This field must be blank.

28 8 Ignored

In ICSF/MVS Version 1 Release 1, this field contained the key qualifier.
The CKDS for ICSF/MVS Version 1 Release 2 or higher does not
support key qualifiers. If your installation has a PCF conversion
program override file created with ICSF/MVS Version 1 Release 1, you
can still use it with z/OS ICSF. Any key qualifier entries are ignored.

36 1 This field must be blank.

37 1 Bypass Flag

Used to indicate that an input CKDS entry is not to be included in the
new ICSF CKDS. If you set this field to Y, the conversion program does
not convert the entry.

The field can have these values:

• Blank (same as N)
• N
• Y

38 1 This field must be blank.

39 52 Installation Data

Any additional information your installation records about a key. The
information appears in the installation data field of the new ICSF
CKDS.

The field can contain any value.

Bypassing conversion of entries
Using an override record, you can bypass a PCF entry so it is not converted and placed in the ICSF CKDS.
You can use a global override record to bypass all the entries in the data set and then use explicit override
records to convert certain entries. You can also convert most of a PCF CKDS and just bypass certain
entries using explicit override records.

These are some examples of override records for bypassing conversion.

Chapter 8. Migration from PCF to z/OS ICSF 225

Example 1
This example shows an override record specifying that the conversion program not convert any PCF CKDS
entry with a certain key label.

 EXTOATM3 Y

The conversion program bypasses any PCF CKDS entry with the label EXTOATM3.

Example 2
This example shows an override record specifying that the conversion program not convert any PCF CKDS
entry with a certain key label and key type.

 CRLABEL4 REMOTE Y

The conversion program bypasses any PCF CKDS entry with the label CRLABEL4 and key type REMOTE.

Example 3
This example shows a global override record specifying that the conversion program bypass all the entries
in a PCF CKDS.

 Y

The conversion program does not convert any of the entries in the PCF CKDS.

After you specify this global override record, you can use explicit override records to convert certain
entries in the PCF CKDS. For example, you can use an override record like this one to explicitly convert
PCF entries with a certain label.

 ATM03 N

In this example, the conversion program converts any PCF CKDS entry with the label ATM03.

Example 4
This example shows a global override record specifying that the conversion program bypass all the entries
with a certain PCF key type in a PCF CKDS.

 REMOTE Y

The conversion program does not convert any of the entries with a key type of REMOTE in the PCF CKDS.
After you specify this global override record, you can use explicit override records to convert specific
entries with a key type of REMOTE in the PCF CKDS.

Including information in a key entry
An ICSF key entry contains an installation data field that an installation can use to further identify a key.
The installation data field contains any information that an installation wants to supply about a key.

PCF records contain an installation data field. The conversion program places the information in the field
into the installation data field of the converted entry in the output ICSF CKDS. You can use an override
record to specify installation data information for the converted entry in the output ICSF CKDS. The
installation data information supplied in the override record overrides any information from the PCF
installation data field. If you do not use an override record, the conversion program places any installation
data from the PCF entry into the leftmost 8 bytes of the ICSF entry.

These are examples of override records for including key information.

226 z/OS: z/OS ICSF System Programmer's Guide

Example 1
This example shows an override record providing the conversion program with installation data
information to place in the ICSF CKDS for any converted PCF entry with a certain key label.

 ATMKEY12 CONVERTED FROM CUSP1.CKDS 10/01/98

When the conversion program converts an entry that is labeled ATMKEY12, it places CONVERTED FROM
CUSP1.CKDS 10/01/98 in the installation data field for the converted entry.

Example 2
This example shows an override record providing the conversion program with installation data
information to place in the ICSF CKDS for any converted PCF entry with a certain key label and key type.

 LOCAL890 LOCAL CONVERTED FROM PCF12.CKDS

When the conversion program converts an entry that is labeled LOCAL890 with a key type of LOCAL, it
places CONVERTED FROM PCF12.CKDS in the installation data field for the converted entry.

Example 3
This example shows a global override record that provides the conversion program with installation data
information to place in the ICSF CKDS for all converted entries.

 CONVERTED FROM PCF10.CKDS

When the conversion program converts the PCF CKDS, it places CONVERTED FROM PCF10.CKDS in the
installation data field. The information is placed into every converted key entry. After you specify this
global override record, you can use explicit override records to provide different information for specific
entries in the PCF CKDS.

Converting key types
By default, the conversion program converts PCF keys into certain ICSF key types. You can use the
override file to override the defaults. For example:

• Instead of automatically converting a PCF local key into a NOCV exporter key-encrypting key, you can
convert the local key into an output PIN-encrypting key.

• Instead of automatically converting a PCF remote key into a NOCV importer key-encrypting key, you can
convert the remote key into an input PIN-encrypting key.

• Instead of automatically converting a PCF cross key into a NOCV exporter key-encrypting key and a
NOCV importer key-encrypting key, you can convert the cross key into an output PIN-encrypting key and
an input PIN-encrypting key.

You can use a global override record to convert all keys of a certain type into a type other than the
conversion program default key type. Then using an explicit override record, you can specify that the
conversion program convert a specific record into a the default key type. For example, you can use a
global override record to convert all remote keys into input PIN-encrypting keys, and then use an override
record to convert specific remote entries into importer key-encrypting keys.

These are some examples of override records for key type conversion.

Example 1
This example shows an override record specifying that the conversion program convert a local key to an
output PIN-encrypting key for any PCF CKDS entry with a certain key label. The override record also
provides the conversion program with installation data.

 CRLABEL1 LOCAL OPINENC OPINENC FOR ATM123

Chapter 8. Migration from PCF to z/OS ICSF 227

When the conversion program converts any PCF entry labeled CRLABEL1 with a key type of local, it
converts the key from a local key type to an output PIN-encrypting key type. The program also places
OPINENC FOR ATM123 in the installation data field.

If you did not specify this override record, the conversion program would automatically convert the entry
from a local key type to an exporter key-encrypting key type.

Example 2
This example shows an override record specifying that the conversion program convert a remote key to an
input PIN-encrypting key for any PCF CKDS entry with a certain key label. The override record also
provides the conversion program with installation data.

 CRLABEL2 REMOTE IPINENC IPINENC FOR ATM123

When the conversion program converts any PCF CKDS entry labeled CRLABEL2 with a key type of remote,
it converts the key from a remote key type to an input PIN-encrypting key type. The program also places
IPINENC FOR ATM123 in the installation data field.

If you did not specify this override record, the conversion program would automatically convert the entry
from a remote key type to an importer key-encrypting key type.

Example 3
This example shows an override record specifying that the conversion program convert a local key to an
exporter key-encrypting key for any PCF CKDS entry with a certain key label. The override record also
provides the conversion program with installation data.

 LOLABEL1 LOCAL EXPORTER EXPORTER CONVERTED FROM CUSP12.CKDS

The conversion program automatically converts a local key to an exporter key-encrypting key. You can use
this override record if you previously submitted an override record that had the conversion program
convert all the local key types to output PIN-encrypting keys. You can use this override record to explicitly
convert the key entry that is labeled LOLABEL1 from a local key type to an exporter key-encrypting key
type.

With the example override record, when the conversion program converts any PCF entry labelled
LOLABEL1 with a key type of local, it converts the key from a local key type to an exporter key-encrypting
key type. The program also places EXPORTER CONVERTED FROM CUSP12.CKDS in the installation data
field.

Example 4
This example shows an override record specifying that the conversion program convert a remote key to an
importer key-encrypting key for any PCF CKDS entry with a certain key label. The override record also
provides the conversion program with installation data.

 RECKDS12 REMOTE IMPORTER IMPORTER CONVERTED FROM CUSP12.CKDS

The conversion program automatically converts remote keys to importer key-encrypting keys. You can use
this override record if you supplied an override record to convert all the remote key types to input key-
encrypting keys. Use this override record to explicitly convert key entries labeled RECKDS12 from remote
key types to importer key-encrypting key types.

With the example override record, when the conversion program converts any PCF entry labeled
RECKDS12 with a key type of remote, it converts the key from a remote key type to an importer key-
encrypting key type. The program also places IMPORTER CONVERTED FROM CUSP12.CKDS in the
installation data field.

228 z/OS: z/OS ICSF System Programmer's Guide

Example 5
This example shows a global override record specifying that the conversion program convert a local key to
an output PIN-encrypting key for any PCF CKDS entry with a key type of local. The override record also
provides the conversion program with installation data.

 LOCAL OPINENC OPINENC FROM CUSP.PIN12.CKDS

When the conversion program converts any PCF entry with a key type of local, the program converts the
key from a local key type to an output PIN-encrypting key type. The program also places OPINENC FROM
CUSP.PIN12.CKDS in the installation data field. After you specify this global override record, you can use
explicit override records to place different installation data in the ICSF CKDS entries.

Example 6
This example shows a global override record specifying that the conversion program convert a remote key
to an input PIN-encrypting key for any PCF CKDS entry with a key type of remote. The override record also
provides the conversion program with installation data.

 REMOTE IPINENC IPINENC FROM CUSP.PIN12.CKDS

When the conversion program converts any CUSP/PCF entry with a key type of remote, it converts the key
from a remote key type to an input PIN-encrypting key type. The program also places IPINENC FROM
CUSP.PIN12.CKDS in the installation data field for the entry in the ICSF CKDS. After you specify this
global override record, you can use explicit override records to place different installation data
information in the ICSF CKDS entries.

Running the conversion program
You can run the conversion program only after you initialize the master key and CKDS for ICSF. The CKDS
you specify at ICSF startup must be initialized to contain NOCV-enablement keys. For information about
defining keys on ICSF, see z/OS Cryptographic Services ICSF Administrator's Guide.

If the PCF master key and the ICSF master key are not the same, you must define the PCF master key in
the input ICSF CKDS. Define the PCF master key as an importer key-encrypting key in the input ICSF
CKDS. You define the key by entering the key through the key entry hardware, or by importing the key
using the ICSF key generator utility program. For information about direct key entry through the key entry
hardware and the key generator utility program, see z/OS Cryptographic Services ICSF Administrator's
Guide.

Note: Be careful defining the PCF master key in the input ICSF CKDS, because there is no programmed
way to determine its validity.

You run the conversion program by submitting a batch job. On the EXEC statement, specify
PGM=CSFCONV. If the PCF master key and ICSF master key are not the same in the PARM= field on the
EXEC statement, specify the label of the PCF master key entry in the input ICSF CKDS. If you do not
specify the parameter, the conversion program assumes that the PCF master key and ICSF master key are
the same.

This example is a JCL that runs the conversion program:

 //CKDSCONV EXEC PGM=CSFCONV,PARM='CUSPMKEY'
 //CSFVSRC DD DSN=PROD.CUSP.CKDS,DISP=SHR
 //CSFVINP DD DSN=TEST.CSF.CKDS,DISP=SHR
 //CSFVOVR DD DSN=OVERRIDE.DATA,DISP=OLD
 //CSFVNEW DD DSN=MERGED.CSF.CKDS,DISP=OLD
 //CSFVRPT DD SYSOUT=A
 //

In the example, CUSPMKEY is the label of the entry in the input ICSF CKDS for the PCF master key in
importer key-encrypting key form. All the data sets necessary to run the conversion program are specified
using DD statements.

Chapter 8. Migration from PCF to z/OS ICSF 229

The conversion program uses these data sets:
CSFVSRC

The PCF CKDS containing entries that you want to convert into ICSF format and place in the output
ICSF CKDS. This is the source CKDS for the conversion. For a description of the PCF CKDS record
format, see OS/VS1 and OS/VS2 MVS Programmed Cryptographic Facility.

CSFVINP
A disk copy of the input ICSF CKDS. The input CKDS should already contain the header record and the
ICSF system keys and can contain other ICSF key entries. If the CKDS does not contain NOCV-
enablement keys, the output ICSF CKDS will not contain NOCV-enablement keys. For more
information about NOCV-enablement keys, see z/OS Cryptographic Services ICSF Administrator's
Guide.

Note: The input ICSF CKDS does not have to be the CKDS you specify when you start ICSF.

CSFVOVR
The override file with information specifying how you want the conversion program to process PCF key
entries. If no override data is required, this data set is optional. However, you must code a dummy DD
statement in the JCL.

This JCL is an example of a dummy DD statement for an override file:

 //CSFVOVR DD DUMMY,DCB=(RECFM=FB,LRECL=90,BLKSIZE=3600)

See “Using the conversion program override file” on page 223 for a description of when and how to
use the override file.

CSFVNEW
An empty disk copy of an ICSF CKDS. This is the ICSF CKDS into which the conversion program places
key entries. The conversion program places key entries from the input ICSF CKDS and the PCF CKDS
into the output ICSF CKDS. The data set must be defined and empty before you run the conversion
program.

CSFVRPT
The activity report that the conversion program creates. The report describes any override records
and gives a summary of CKDS entries that were affected by the conversion program.

Attention: If a conversion program run ends prematurely, the results of the job are unpredictable.
You should not read a CKDS involved in the conversion into storage for use. For a description of the
conversion program return codes, see the explanation of message CSFV0026 in z/OS
Cryptographic Services ICSF Messages.

When you run the conversion program, the program produces information about the conversion in an
activity report. The activity report lists each override entry, the action each override entry applies to the
input PCF CKDS, and any error messages. The activity report also lists the data sets that were used in the
conversion and a summary of processing. The summary of processing contains totals that apply to CKDS
entries in the conversion program job.

Example of a Conversion Initial Activity Report
Figure 11 on page 231 is an example of an activity report with five explicit override records and no global
override records.

230 z/OS: z/OS ICSF System Programmer's Guide

CRYPTOGRAPHIC CONVERSION ACTIVITY REPORT DATE: 2001/06/01 (YYYY/MM/DD) TIME: 10:13:09 PAGE: 1
 OVERRIDE--> CRLABEL3 LOCAL OPINENC Used in transfers to Main Office.
 >>>CSFV0192 TYPE FOR KEY ENTRY CRLABEL3 LOCAL CONVERTED TO OPINENC.
 >>>CSFV0232 INSTALLATION DATA FOR KEY ENTRY CRLABEL3 OPINENC SET TO Used in transfers to Main Office

 OVERRIDE--> CRLABEL3 REMOTE IPINENC Used in receiving from the Main Office
 >>>CSFV0192 TYPE FOR KEY ENTRY CRLABEL3 REMOTE CONVERTED TO IPINENC.
 >>>CSFV0232 INSTALLATION DATA FOR KEY ENTRY CRLABEL3 IPINENC SET TO Used in receiving from the Main Office.

 OVERRIDE--> KGLABEL1 LOCAL OPINENC Used for sending encrypted PINs
 >>>CSFV0292 NO KEY ENTRY FOUND FOR KGLABEL1 LOCAL.

 OVERRIDE--> LOLABEL2 Valid for January 2001
 >>>CSFV0232 INSTALLATION DATA FOR KEY ENTRY LOLABEL2 EXPORTER SET TO Valid for January 2001.

 OVERRIDE--> ZZZZ1 LOCAL Y Eliminate Key from output CKDS
 >>>CSFV0382 ADD/CHANGE SPECIFICATIONS IGNORED ON OVERRIDE ENTRY. BYPASS_FLAG VALUE IS "Y".
 >>>CSFV0292 NO KEY ENTRY FOUND FOR ZZZZ1 LOCAL.

 >>>CSFV0012 CONVERSION PROCESSING COMPLETED. RETURN CODE = 4.

CRYPTOGRAPHIC CONVERSION ACTIVITY REPORT DATE: 2001/06/01 (YYYY/MM/DD) TIME: 10:13:09 PAGE: 2

 CKDS DDNAME Data Set Name
 ------------ --------------
 CSFVSRC PROD.CUSP.CKDS
 CSFVINP TEST.CSF.CKDS
 CSFVNEW MERGED.CSF.CKDS

 PROCESSING SUMMARY

 Source CKDS Entries Converted Entries ICSF Entries
 -------------------------------- ----------------------------------- -----------------------------------
 LOCAL 4 * Candidates 16 + Changed Input Entries 2
 REMOTE 4 Bypassed by Overrides (0) Unchanged Input Entries 13
 CROSS 4 --------------------------------
 ----------------------------- -------------------------------- TOTAL ICSF Input Entries 15
 * TOTAL Source Entries 12 TOTAL Converted Entries 16 + Entries Added from Source 14
 Entries Bypassed by Exit (0)

 TOTAL Output ICSF Entries 29

 * One Source CKDS CROSS entry converts to two Candidates.
 + Total Converted Entries = Changed Input Entries + Entries Added from Source.

Figure 11. Example of a Conversion Initial Activity Report

In the report, the first override record specifies that when the conversion program converts a PCF entry
labeled CRLABEL3 with a key type of local, the program should convert the entry into an output PIN-
encrypting key. The conversion program also places the information Used in transfers to Main
Office in the installation data field of the output ICSF CKDS entry.

The second override record specifies that when the conversion program converts a PCF entry labeled
CRLABEL3 with a key type of remote, the program should convert the key into an input PIN-encrypting
key. The conversion program places the information Used in receiving from the Main Office in
the installation data field of the output ICSF CKDS entry.

The label specified by the third override record does not exist in the PCF CKDS. Therefore, the conversion
program ignores this override record.

The fourth override record specifies that when the conversion program converts a PCF entry labelled
LOLABEL2, the program should place the information Valid for January 2001 in the installation
data field of the output ICSF CKDS record.

The label specified by the fifth override record does not exist on the PCF CKDS that the conversion
program is converting. Therefore, the conversion program ignores this override record.

The message that the conversion processing has been completed is followed by a return code. Return
codes are listed under message CSFV0026 in z/OS Cryptographic Services ICSF Messages.

After describing the five override records, the conversion report lists the data sets the conversion program
used in the conversion. PROD.CUSP.CKDS is the PCF CKDS that the program converted. TEST.CSF.CKDS is
the input ICSF CKDS containing the ICSF entries input during the conversion. MERGED.CSF.CKDS is the
output ICSF CKDS where the conversion program placed the converted entries.

Chapter 8. Migration from PCF to z/OS ICSF 231

Then the activity report lists totals pertaining to the conversion. The PCF CKDS has a total of 12 entries:
four with a key type of local, four with a key type of remote, and four with a key type of cross. Because the
conversion of each cross key entry results in two ICSF entries, the total ICSF entries that are candidates
for conversion from the PCF is 16. None of these candidates was bypassed because of an override record,
so 16 PCF entries were converted.

There were 15 entries in the input ICSF CKDS, and two of these entries were updated because they had
identical key labels in the PCF CKDS. Fourteen new output ICSF CKDS entries were added from the PCF
CKDS. The total number of entries in the output ICSF CKDS is 29. This includes the 15 entries in the input
ICSF CKDS and the 14 entries added from the PCF CKDSN. No entries were bypassed because of the
conversion program exit.

Example of a Conversion Update Activity Report
Figure 12 on page 232 is an example of an activity report with a global override record that has the
conversion program bypass all the entries in the PCF CKDS. Then two override records are used to convert
specific entries.

CRYPTOGRAPHIC CONVERSION ACTIVITY REPORT DATE: 2001/06/01 (YYYY/MM/DD) TIME: 10:13:09 PAGE: 1
OVERRIDE--> Y
 >>>CSFV0172 ALL ENTRIES BYPASSED.

 OVERRIDE--> CRLABEL3 LOCAL OPINENC Used in transfers to Main Office
 >>>CSFV0222 KEY ENTRY CRLABEL3 LOCAL NOT BYPASSED.
 >>>CSFV0192 TYPE FOR KEY ENTRY CRLABEL3 LOCAL CONVERTED TO OPINENC.
 >>>CSFV0232 INSTALLATION DATA FOR KEY ENTRY CRLABEL3 OPINENC SET TO Used in transfers to Main Office.

OVERRIDE--> LOLABEL2 Valid for January 2001
 >>>CSFV0222 KEY ENTRY LOLABEL2 LOCAL NOT BYPASSED.
 >>>CSFV0232 INSTALLATION DATA FOR KEY ENTRY LOLABEL2 EXPORTER SET TO Valid for January 2001.

 >>>CSFV0012 CONVERSION PROCESSING COMPLETED. RETURN CODE = 0.

CRYPTOGRAPHIC CONVERSION ACTIVITY REPORT DATE: 2001/06/01 (YYYY/MM/DD) TIME: 10:13:09 PAGE: 2

 CKDS DDNAME Data Set Name
 ------------ --------------
 CSFVSRC PROD.PCF.CKDS
 CSFVINP INTEST.CSF.CKDS
 CSFVNEW NEWTEST.CSF.CKDS

 PROCESSING SUMMARY

 Source CKDS Entries Converted Entries ICSF Entries
 -------------------------------- ----------------------------------- -----------------------------------
 LOCAL 4 * Candidates 16 + Changed Input Entries 1
 REMOTE 4 Bypassed by Overrides (14) Unchanged Input Entries 27
 CROSS 4 --------------------------------
 ----------------------------- -------------------------------- TOTAL ICSF Input Entries 28
 * TOTAL Source Entries 12 TOTAL Converted Entries 2 + Entries Added from Source 1
 Entries Bypassed by Exit (0)

 TOTAL Output ICSF Entries 29

 * One Source CKDS CROSS entry converts to two Candidates.
 + Total Converted Entries = Changed Input Entries + Entries Added from Source.

Figure 12. Example of a Conversion Update Activity Report

The first override record specifies that the conversion program bypass all the entries in the PCF CKDS. The
second override record specifies that the conversion program convert a PCF entry labeled CRLABEL3 with
a key type of local into an output PIN-encrypting key. This second override record also instructs the
conversion program to place the phrase Used in transfers to Main Office in the installation data
field of the output ICSF CKDS entry. The third override record specifies that the conversion program
convert a PCF entry labeled LOLABEL2 and place Valid for January 2001 in the installation data
field of the output ICSF CKDS entry.

After describing the three override records, the conversion report lists the data sets the conversion
program used in the conversion. PROD.PCF.CKDS is the PCF CKDS that the program converted.
INTEST.CSF.CKDS is the input ICSF CKDS that contains the ICSF entries input containing the ICSF entries
input during the conversion. NEWTEST.CSF.CKDS is the output ICSF CKDS where the conversion program
placed the converted entries.

232 z/OS: z/OS ICSF System Programmer's Guide

Then the activity report lists totals pertaining to the conversion. The PCF CKDS has a total of 12 entries:
four with a key type of local, four with a key type of remote, and four with a key type of cross. Because the
conversion of each cross key entry results in two ICSF entries, the total ICSF records that are candidates
for conversion from PCF is 16. Fourteen of those 16 entries were bypassed because of the global override
record.

There were 28 entries in the input ICSF CKDS, and one of these entries was updated because it had an
identical key label in the PCF CKDS. The total number of entries in the output ICSF CKDS is 29. This
includes the 28 entries in the input ICSF CKDS plus the one added from the PCF CKDS. No entries were
bypassed because of the conversion program exit.

Chapter 8. Migration from PCF to z/OS ICSF 233

234 z/OS: z/OS ICSF System Programmer's Guide

Appendix A. Diagnosis reference information

This appendix contains Diagnosis, Modification, or Tuning Information.

This appendix contains descriptions of the cryptographic key data set (CKDS), the public key data set
(PKDS), PKA key tokens, the Cryptographic Communication Vector Table (CCVT), and Cryptographic
Communication Vector Table Extension (CCVE) data areas.

For more information about key tokens, refer to z/OS Cryptographic Services ICSF Application
Programmer's Guide.

Cryptographic Key Data Set (CKDS) formats
There are three formats of the CKDS: a fixed length record format (supported by all releases of ICSF), a
variable length record format (supported by ICSF FMID HCR7780 and later releases), and KDSR record
format which is common to all KDS types (supported by ICSF FMID HCR77A1 and later releases). The
variable length record format is only required if AES or HMAC variable-length key tokens are to be stored
in the CKDS. The variable length record format can be used to store all existing symmetric keys and the
AES and HMAC variable-length key tokens. KDSR is a variable length record format and supports all the
function of the original variable length record format and also allows ICSF to track key usage if so
configured.

Format of the CKDS header record
Table 31. Cryptographic Key Data Set Header Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 72 Constant The field is set to binary zeros and is not used for the
header record.

72 8 Creation date The date the CKDS was initialized in the format
yyyymmdd.

80 8 Creation time The initial time the CKDS was created in the format
hhmmssth.

88 8 Last update date The most recent date the CKDS was updated, in the
format yyyymmdd. This field is no longer updated when a
record is updated.

96 8 Last update time The most recent time the CKDS was updated, in the
format hhmmssth. This field is no longer updated when a
record is updated.

104 2 Sequence number Initially zero in binary. Incremented each time the data set
is processed. This field is no longer updated.

© Copyright IBM Corp. 2007, 2021 235

Table 31. Cryptographic Key Data Set Header Record Format (continued)

Offset (Dec)
Number of
Bytes Field Name Description

106 2 CKDS header flag
bytes

Flag bytes.
Bit

Meaning When Set On
0

The DES master key verification pattern is valid.
1

Reserved.
2

The AES master key verification pattern is valid.
3–7

Reserved.
8

Record level authentication is disabled.
9

The record format is variable. Set on for either variable
length record format or KDSR record format.

10
CKDS not completely written, missing records.

11–15
Reserved.

Note: After the bits are set on, the given values remain
constant in ICSF.

108 8 DES master key
verification pattern

The system DES master key verification pattern.

116 8 Reserved

124 8 AES master key
verification pattern.

The AES master key verification pattern.

132 4 Record length Length of the record in bytes. X'00000000' for fixed length
record format. X'000000FC' for either variable length
record format or KDSR record format.

136 1 Record version Version number of the CKDS in binary. Set to X'00' for
fixed length record format or variable length record
format. Set to X'02' or greater for KDSR record format.

137 59 Reserved

196 52 Installation data Installation data associated with the CKDS record, as
supplied by an installation exit.

236 z/OS: z/OS ICSF System Programmer's Guide

Table 31. Cryptographic Key Data Set Header Record Format (continued)

Offset (Dec)
Number of
Bytes Field Name Description

248 4 Authentication code The code generated by the authentication process that
ensures that the CKDS record has not been modified since
the last update. The authentication code is placed in the
CKDS header record when the CKDS is initialized. ICSF
verifies the CKDS header record authentication code
whenever a CKDS is reenciphered, refreshed, or converted
from PCF to ICSF format.This field is not used when the
record level authentication flag is set in the CKDS header
flag bytes field of the CKDS header record.

Format of the fixed-length CKDS record
Table 32. Cryptographic Key Data Set Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 64 Key label The key label specified by the KGUP control statement or
Clear Key Input panel when the record was created. When
using KGUP and the callable services, you can specify the
label to identify the record. The key label is the first field
of the key index.

64 8 Key type The type of key the record contains. The master key
variant for the key type enciphers the key. A KGUP control
statement or Clear Key Input panel specifies the key type
when the record is created. The key type is the second
field of the key index.

72 8 Creation date The initial date the CKDS record was created in the format
yyyymmdd.

80 8 Creation time The initial time the CKDS record was created in the format
hhmmssth.

88 8 Last update date The most recent date the CKDS record was updated in the
format yyyymmdd.

96 8 Last update time The most recent time the CKDS record was updated in the
format hhmmssth.

104 64 Key token The internal key token. A key token contains the key value.
The value in byte four of the internal key token indicates
whether the key is AES or DES. Refer to “AES internal
fixed-length key token” on page 273 and “DES fixed-
length key token” on page 275 for the format of the
internal key token.

Appendix A. Diagnosis reference information 237

Table 32. Cryptographic Key Data Set Record Format (continued)

Offset (Dec)
Number of
Bytes Field Name Description

168 2 CKDS flag bytes Flag bytes.
Bit

Meaning When Set On
0

The key within the key token field (offset 104) is a
partial key. The key is unusable.

1
Reserved.

2
CKDS label must be unique.

3–7
Reserved.

170 26 Reserved Reserved.

196 52 Installation data Installation data associated with the CKDS record as
supplied by an installation exit.

248 4 Authentication code The code generated by the authentication process that
ensures the CKDS record has not been modified since the
last update. The authentication code is placed in the CKDS
record when the record is created. When you refresh,
reencipher, or convert a CKDS, ICSF verifies each CKDS
record as ICSF performs the action. This field is not used
when the record level authentication flag is set in the
CKDS header flag bytes field of the CKDS header record.

Format of the variable-length CKDS record
The following table presents the format of each variable-length data set record.

Table 33. Variable-Length Cryptographic Key Data Set Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 64 Key label The label or name of this CKDS record. The key label is the
first field of the key index.

64 8 Key type The type of key the record contains. The key type is the
second field of the key index.

72 8 Creation date The initial date the CKDS record was created in the format
yyyymmdd.

80 8 Creation time The initial time the CKDS record was created in the format
hhmmssth.

88 8 Last update date The most recent date the CKDS record was updated in the
format yyyymmdd.

96 8 Last update time The most recent time the CKDS record was updated in the
format hhmmssth.

104 4 Record length Length of the entire record including the key token.

238 z/OS: z/OS ICSF System Programmer's Guide

Table 33. Variable-Length Cryptographic Key Data Set Record Format (continued)

Offset (Dec)
Number of
Bytes Field Name Description

108 60 Reserved.

168 2 CKDS flag bytes Flag bytes.
Bit

Meaning When Set On
0

The key within the key token field is a partial key. The
key is unusable.

1
Reserved.

2
CKDS label must be unique.

3
The record format is variable — always 1

4–7
Reserved.

170 26 Reserved.

196 52 Installation data

248 20 Authentication code The record authentication code.

268 variable Key token The key token.

Format of KDSR CKDS record
See “Common record format (KDSR)” on page 270 for more information on this CKDS record.

Public Key Data Set (PKDS) format
The PKDS record includes the PKDS header and the PKA key token. These tables show the format of each
of these records.

Format of the PKDS header record
Table 34. Public Key Data Set Header Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 64 PKHVKEY VSAM key of the PKDS header.

64 8 Reserved.

72 8 PKHCRDTE The date the PKDS was created in the format yyyymmdd.

80 8 PKHCRTIM The initial time the PKDS was created in the format
hhmmssth.

88 8 PKHUPDTE The most recent date the PKDS header was updated, in
the format yyyymmdd. This field is no longer updated
when a record is updated.

Appendix A. Diagnosis reference information 239

Table 34. Public Key Data Set Header Record Format (continued)

Offset (Dec)
Number of
Bytes Field Name Description

96 8 PKHUPTIM The most recent time the PKDS header was updated, in
the format hhmmssth. This field is no longer updated
when a record is updated.

104 4 PKHRLEN Length of the PKDS header entry.

108 16 Reserved

124 16 PKHSMKHP The hash pattern of the RSA MK.

140 8 PKHEMKVP The verification pattern of the ECC MK.

148 10 Reserved

158 1 PKHVER Version number of the PKDS in binary.

• Set to X'00' for PKDS record format.
• Set to X'02' or greater for KDSR record format.

159 1 Flag bytes.
Bit

Meaning When Set On
0

PKDS not completely written, missing records.
1-7

Reserved.

160 20 PKHAUTH PKDS header authentication code.

Format of the PKDS record
Table 35. Public Key Data Set Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 64 PKDLABEL Label or name of this PKDS entry.

64 8 Reserved.

72 8 PKDCRDTE The date this PKDS record was created in the format
yyyymmdd.

80 8 PKDCRTIM The initial time this PKDS record was created in the format
hhmmssth.

88 8 PKDUPDTE The most recent date this PKDS record was updated, in
the format yyyymmdd.

96 8 PKDUPTIM The most recent time this PKDS record was updated, in
the format hhmmssth.

104 4 PKDRLEN Length of the entire PKDS record entry.

108 52 PKDUDATA User data.

240 z/OS: z/OS ICSF System Programmer's Guide

Table 35. Public Key Data Set Record Format (continued)

Offset (Dec)
Number of
Bytes Field Name Description

160 20 PKDAUTH The entry authentication code.

180 1868 PKDTOKEN The public or private key token.

Token data set (TKDS) format
A z/OS PKCS #11 token represents a virtual cryptographic device, and can contain multiple objects. The
token data set (TKDS) contains definitions of z/OS PKCS #11 tokens and token objects.

The token data set includes a header record and records for each of the individual z/OS PKCS #11 tokens
and token objects. Each object associated with a particular z/OS PKCS #11 token has the token's name in
its handle. The records are variable length records, and contain a length field specifying the total length of
the record.

Format of the header record of the token data set
There is one header record for the token data set.

Table 36. Format of the header record of the token data set

Offset (decimal) Length of field (bytes) Description

0 72 VSAM key of the TKDS header.
Bytes 0-39:

Binary zeros.
Bytes 40-43:

EBCDIC 'THDR'.
Bytes 44-71:

Binary zeros.

72 8 Reserved for IBM's use.

80 8 The date that the TKDS was created, in the format
yyyymmdd.

88 8 The time that the TKDS was created, in the format
hhmmssth.

96 8 The most recent date that the TKDS header was updated, in
the format yyyymmdd. This field is no longer updated when
a record is updated.

104 8 The most recent time that the TKDS header was updated, in
the format hhmmssth. This field is no longer updated when
a record is updated.

112 4 Length of the TKDS header record.

116 16 P11 MKVP.

132 16 RCS MKVP.

148 6 Reserved.

Appendix A. Diagnosis reference information 241

Table 36. Format of the header record of the token data set (continued)

Offset (decimal) Length of field (bytes) Description

154 1 Version number of the TKDS in binary.

• Set to X'00' for fixed length record format or variable
length record format.

• Set to X'02' or greater for KDSR record.

155 1 Flag bytes.
Bit

Meaning When Set On
0

TKDS not completely written, missing records.
1-7

Reserved.

Format of the token and object records
Each z/OS PKCS #11 token record and token object record begins with the same 188 bytes of data. The
remainder of the record is specific to the token or object.

Common section of the token and object records
Every record in the token data set, with the exception of the header record, begins with these 188 bytes of
data.

Table 37. Format of the common section of the token and object records

Offset
(decimal)

Length of field
(bytes) Description

0 72 Handle of token or object
Bytes 0-31:

Token name
Bytes 32-39:

Sequence number
Byte 40:

Character "T" for clear token object
Character "Y" for secure token object

Bytes 41-43
Blank characters

Bytes 44-71:
Binary zeros

72 8 Reserved for IBM's use

80 8 The date that this record was created, in the format yyyymmdd

88 8 The time that this record was created, in the format hhmmssth

96 8 The most recent date that this record was updated, in the format
yyyymmdd

104 8 The most recent time that this record was updated, in the format
hhmmssth

242 z/OS: z/OS ICSF System Programmer's Guide

Table 37. Format of the common section of the token and object records (continued)

Offset
(decimal)

Length of field
(bytes) Description

112 4 Length of the entire TKDS record entry

116 20 Reserved for IBM's use

136 52 User data

188 variable The TKDS token or object (see mappings)

Format of the token-specific section of the token record
Each z/OS PKCS #11 token record begins with the 188 bytes. The remainder of the record contains the
contents of the token. The mapping of the record shows the data beginning at offset 0, which is its offset
into the token-specific portion of the record; however, that portion of the record is at an offset of 188 into
the entire record.

Table 38. Format of the unique section of the token record

Offset (decimal)
188 + Length of field

(bytes) Description

0 4 Eye catcher for token: "TOKN"

4 2 Version number of structure: EBCDIC '00'

6 2 Length of structure in bytes

8 4 Reserved for IBM's use. Must be zeros.

12 8 Last assigned sequence number

20 32 Manufacturer identification

52 16 Model

68 16 Serial number

84 8 Date of the most recent update to this token, expressed as
Coordinated Universal Time (UTC) in the format yyyymmdd.
This includes any update to token information or to a token
object.

92 8 Time of the most recent update to this token, expressed as
Coordinated Universal Time (UTC) in the format hhmmssth.
This includes any update to token information or to a token
object.

100 44 Reserved for IBM's use

144 End of token

Format of the object-specific sections of the token object records
The following classes of objects can be associated with a z/OS PKCS #11 token:

• Certificate
• Public key
• Private key
• Secret key

Appendix A. Diagnosis reference information 243

• Data objects
• Domain parameters

The token object record for each begins with the common section described “Common section of the
token and object records” on page 242, followed by a section specific to the class of object. Each of the
object-specific sections begins with a 12-byte header record, followed by a variable-length section. Each
12-byte header contains a 4-byte flag field that has the same mapping for all classes of objects.

This 4-byte flag field occurs in the object header section of each token object record.

Table 39. Format of the token object flags

Flag bytes Field name Description

Flag byte 1

Bit 0 OBJ_IS_TOKOBJ When on, the object is a token object. When
off, the object is a session object.

Bit 1 OBJ_IS_PRVOBJ When on, the object is a private object.
When off, the object is a public object.

Bit 2 OBJ_IS_MODOBJ When on, the object is modifiable.

Bit 3 KEY_DERIVE When on, the key supports key derivation.

Bit 4 KEY_LOCAL When on, the key was generated locally.

Bit 5 KEY_ENCRYPT When on, the key supports encryption.

Bit 6 KEY_DECRYPT When on, the key supports decryption.

Bit 7 KEY_VERIFYA When on, the key supports verification
where the signature is an appendix to the
data.

Flag byte 2

Bit 0 KEY_VERIFYR When on, the key supports verification
where the data is recovered from the
signature

Bit 1 KEY_SIGA When on, the key supports signatures where
the signature is an appendix to the data.

Bit 2 KEY_SIGR When on, the key supports signatures where
the data is recovered from the signature.

Bit 3 KEY_WRAP When on, the key supports wrapping.

Bit 4 KEY_UNWRAP When on, the key supports unwrapping.

Bit 5 KEY_EXTRACT When on, the key is extractable.

Bit 6 KEY_IS_SENSITIVE When on, the key is sensitive.

Bit 7 KEY_IS_ALWAYS_SENSITIVE When on, the SENSITIVE attribute
(KEY_IS_SENSITIVE) is always true.

Flag byte 3

Bit 0 KEY_NEVER_EXTRACT When on, the EXTRACTABLE attribute
(KEY_EXTRACT) is never true. When off, the
EXTRACTABLE attribute (KEY_EXTRACT) can
be true.

244 z/OS: z/OS ICSF System Programmer's Guide

Table 39. Format of the token object flags (continued)

Flag bytes Field name Description

Bit 1 OBJ_IS_TRUSTED When on, the certificate can be trusted for
the application for which it was created.

Bit 2 CERT_IS_DEFAULT When on, this is the default certificate.

Bit 3 FIPS140 When on, key is only to be used in a FIPS-
compliant manner.

Bit 4 KEY_IS_SECURE When on, key is a secure PKCS #11 key.

Bit 5 KEY_ATTRBOUND When on, key is attribute bound.

Bit 6 WRAP_WITH_TRUSTED When on, key may only be wrapped with
another key marked OBJ_IS_TRUSTED

Bit 7 KEY_IS_ALWAYS_SECURE When on, KEY_IS_SECURE is always true.

Flag byte 4

Bit 0 KEY_IS_REGIONAL When on, key requires a regional
cryptographic server.

Bits 1-7 Reserved for IBM's use.

Table 40. Format of the token certificate object

Offset (decimal)
188 + Length of field

(bytes) Description

Object header

0 4 Eye catcher for certificate object: "CERT"

4 2 Version: EBCDIC '00'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 39 on page 244)

Object type-specific section

12 4 TYPE attribute:
X'00000000': CKC_X_509

16 4 Certificate category
0

Undefined
1

Token user
2

Certificate authority
3

Other entity

20 8 Reserved for IBM's use

28 32 Reserved for IBM's use

60 2 Length of SUBJECT attribute in bytes (aa)

Appendix A. Diagnosis reference information 245

Table 40. Format of the token certificate object (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

62 2 Length of ID attribute in bytes (bb)

64 2 Length of ISSUER attribute in bytes (cc)

66 2 Length of SERIAL_NUMBER attribute in bytes (dd)

68 2 Length of VALUE attribute in bytes (ee)

70 2 Length of LABEL attribute in bytes (ff)

72 2 Length of APPLICATION attribute in bytes (gg)

74 22 Reserved for IBM's use

96 4 Offset of SUBJECT attribute in bytes

100 4 Offset of ID attribute in bytes

104 4 Offset of ISSUER attribute in bytes

108 4 Offset of SERIAL_NUMBER attribute in bytes

112 4 Offset of VALUE attribute in bytes

116 4 Offset of LABEL attribute in bytes

120 4 Offset of APPLICATION attribute in bytes

124 44 Reserved for IBM's use

168 aa + bb + cc + dd + ee
+ ff + gg

Certificate attributes (variable length)

168 + aa + bb
+ cc + dd + ee
+ ff + gg

End of certificate object

Table 41. Format of the token public key object (Version 0)

Offset (decimal)
188 + Length of field

(bytes) Description

Object header

0 4 Eye catcher for public key object: "PUBK"

4 2 Version: EBCDIC '00'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 39 on page 244)

Object type-specific section

12 4 TYPE attribute:
CKK_RSA

16 8 Start date for the key, in the format yyyymmdd

24 8 End date for the key, in the format yyyymmdd

246 z/OS: z/OS ICSF System Programmer's Guide

Table 41. Format of the token public key object (Version 0) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

32 4 Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

72 4 Length in bits of modulus n

76 256 Modulus n

332 256 Reserved

588 256 Public exponent e

844 256 Reserved

1100 2 Length of SUBJECT attribute in bytes (aa)

1102 2 Length of ID attribute in bytes (bb)

1104 2 Length of LABEL attribute in bytes (cc)

1106 2 Length of APPLICATION attribute in bytes (dd)

1108 20 Reserved

1128 4 Offset of SUBJECT attribute in bytes

1132 4 Offset of ID attribute in bytes

1136 4 Offset of LABEL attribute in bytes

1140 4 Offset of APPLICATION attribute in bytes

1144 40 Reserved

1184 aa+bb+cc+dd Public key attributes (variable length)

1184
+aa+bb+cc+dd

End of public key object

Table 42. Format of the token public key object (Version 1)

Offset (decimal)
188 + Length of field

(bytes) Description

Object header

0 4 Eye catcher for public key object: "PUBK"

4 2 Version: EBCDIC '01'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 39 on page 244)

Object type-specific section

12 4 TYPE attribute:
CKK_RSA, CKK_DSA, CKK_EC, or CKK_DH

Appendix A. Diagnosis reference information 247

Table 42. Format of the token public key object (Version 1) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

16 8 Start date for the key, in the format yyyymmdd

24 8 End date for the key, in the format yyyymmdd

32 4 Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

Algorithm-specific section (RSA)

72 4 Length in bits of modulus n

76 512 Modulus n

588 512 Public exponent e

Algorithm-specific section (DSA)

72 4 Length in bits of prime p

76 128 Reserved

204 128 Prime p

332 128 Reserved

460 128 Base g

588 128 Reserved

716 128 Value y

844 20 Reserved

864 20 Subprime q

884 216 Reserved

Algorithm-specific section (DH)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 256 Value y

844 256 Reserved

Algorithm-specific section (EC)

248 z/OS: z/OS ICSF System Programmer's Guide

Table 42. Format of the token public key object (Version 1) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

72 4 EC params curve constant –

x'00000001' secp192r1
 - { 1 2 840 10045 3 1 1 }
x'00000002' secp224r1
 - { 1 3 132 0 33 }
x'00000003' secp256r1
 - { 1 2 840 10045 3 1 7 }
x'00000004' secp384r1
 - { 1 3 132 0 34 }
x'00000005' secp521r1
 - { 1 3 132 0 35 }
x'00000006' brainpoolP160r1
 - { 1 3 36 3 3 2 8 1 1 1 }
x'00000007' brainpoolP192r1
 - { 1 3 36 3 3 2 8 1 1 3 }
x'00000008' brainpoolP224r1
 - { 1 3 36 3 3 2 8 1 1 5 }
x'00000009' brainpoolP256r1
 - { 1 3 36 3 3 2 8 1 1 7 }
x'0000000A' brainpoolP320r1
 - { 1 3 36 3 3 2 8 1 1 9 }
x'0000000B' brainpoolP384r1
 - { 1 3 36 3 3 2 8 1 1 11 }
x'0000000C' brainpoolP512r1
 - { 1 3 36 3 3 2 8 1 1 13 }

76 128 Reserved

204 136 EC point Q (DER encoded)

340 760 Reserved

Variable length attribute section

1100 2 Length of SUBJECT attribute in bytes (aa)

1102 2 Length of ID attribute in bytes (bb)

1104 2 Length of LABEL attribute in bytes (cc)

1106 2 Length of APPLICATION attribute in bytes (dd)

1108 20 Reserved

1128 4 Offset of SUBJECT attribute in bytes

1132 4 Offset of ID attribute in bytes

1136 4 Offset of LABEL attribute in bytes

1140 4 Offset of APPLICATION attribute in bytes

1144 40 Reserved

1184 aa+bb+cc+dd Public key attributes (variable length)

Appendix A. Diagnosis reference information 249

Table 42. Format of the token public key object (Version 1) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

1184
+aa+bb+cc+dd

End of public key object

Table 43. Format of the token public key object (Version 2)

Offset (decimal)
188 + Length of field

(bytes) Description

Object header

0 4 Eye catcher for public key object: "PUBK"

4 2 Version: EBCDIC '02'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 39 on page 244)

Object type-specific section

12 4 TYPE attribute:
CKK_RSA, CKK_DSA, CKK_EC, or CKK_DH

16 8 Start date for the key, in the format yyyymmdd

24 8 End date for the key, in the format yyyymmdd

32 4 Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

Algorithm-specific section (RSA)

72 4 Length in bits of modulus n

76 512 Modulus n

588 512 Public exponent e

Algorithm-specific section (DSA)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 256 Value y

844 8 Reserved

852 32 Subprime q

884 216 Reserved

Algorithm-specific section (DH)

72 4 Length in bits of prime p

250 z/OS: z/OS ICSF System Programmer's Guide

Table 43. Format of the token public key object (Version 2) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

76 256 Prime p

332 256 Base g

588 256 Value y

844 256 Reserved

Algorithm-specific section (EC)

72 4 EC params curve constant –

x'00000001' secp192r1
 - { 1 2 840 10045 3 1 1 }
x'00000002' secp224r1
 - { 1 3 132 0 33 }
x'00000003' secp256r1
 - { 1 2 840 10045 3 1 7 }
x'00000004' secp384r1
 - { 1 3 132 0 34 }
x'00000005' secp521r1
 - { 1 3 132 0 35 }
x'00000006' brainpoolP160r1
 - { 1 3 36 3 3 2 8 1 1 1 }
x'00000007' brainpoolP192r1
 - { 1 3 36 3 3 2 8 1 1 3 }
x'00000008' brainpoolP224r1
 - { 1 3 36 3 3 2 8 1 1 5 }
x'00000009' brainpoolP256r1
 - { 1 3 36 3 3 2 8 1 1 7 }
x'0000000A' brainpoolP320r1
 - { 1 3 36 3 3 2 8 1 1 9 }
x'0000000B' brainpoolP384r1
 - { 1 3 36 3 3 2 8 1 1 11 }
x'0000000C' brainpoolP512r1
 - { 1 3 36 3 3 2 8 1 1 13 }

76 128 Reserved

204 136 EC point Q (DER encoded)

340 760 Reserved

Variable length attribute section

1100 2 Length of SUBJECT attribute in bytes (aa)

1102 2 Length of ID attribute in bytes (bb)

1104 2 Length of LABEL attribute in bytes (cc)

1106 2 Length of APPLICATION attribute in bytes (dd)

1108 20 Reserved

1128 4 Offset of SUBJECT attribute in bytes

1132 4 Offset of ID attribute in bytes

Appendix A. Diagnosis reference information 251

Table 43. Format of the token public key object (Version 2) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

1136 4 Offset of LABEL attribute in bytes

1140 4 Offset of APPLICATION attribute in bytes

1144 40 Reserved

1184 aa+bb+cc+dd Public key attributes (variable length)

1184
+aa+bb+cc+dd

End of public key object

Table 44. Format of the token public key object (Version 3)

Offset (decimal)
188 + Length of field

(bytes) Description

Object header

0 4 Eye catcher for public key object: "PUBK"

4 2 Version: EBCDIC '03'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 39 on page 244)

Object type-specific section

12 4 TYPE attribute:
CKK_RSA, CKK_DSA, CKK_EC, or CKK_DH

16 8 Start date for the key, in the format yyyymmdd

24 8 End date for the key, in the format yyyymmdd

32 4 Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 2 Reserved

38 2 Length of secure key material in bytes (ee)

40 4 Offset to secure key material in bytes

44 28 Reserved

Algorithm-specific section (RSA)

72 4 Length in bits of modulus n

76 512 Modulus n

588 512 Public exponent e

Algorithm-specific section (DSA)

72 4 Length in bits of prime p

76 256 Prime p

252 z/OS: z/OS ICSF System Programmer's Guide

Table 44. Format of the token public key object (Version 3) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

332 256 Base g

588 256 Value y

844 8 Reserved

852 32 Subprime q

884 216 Reserved

Algorithm-specific section (DH)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 256 Value y

844 256 Reserved

Algorithm-specific section (EC)

72 4 EC params curve constant –

x'00000001' secp192r1
 - { 1 2 840 10045 3 1 1 }
x'00000002' secp224r1
 - { 1 3 132 0 33 }
x'00000003' secp256r1
 - { 1 2 840 10045 3 1 7 }
x'00000004' secp384r1
 - { 1 3 132 0 34 }
x'00000005' secp521r1
 - { 1 3 132 0 35 }
x'00000006' brainpoolP160r1
 - { 1 3 36 3 3 2 8 1 1 1 }
x'00000007' brainpoolP192r1
 - { 1 3 36 3 3 2 8 1 1 3 }
x'00000008' brainpoolP224r1
 - { 1 3 36 3 3 2 8 1 1 5 }
x'00000009' brainpoolP256r1
 - { 1 3 36 3 3 2 8 1 1 7 }
x'0000000A' brainpoolP320r1
 - { 1 3 36 3 3 2 8 1 1 9 }
x'0000000B' brainpoolP384r1
 - { 1 3 36 3 3 2 8 1 1 11 }
x'0000000C' brainpoolP512r1
 - { 1 3 36 3 3 2 8 1 1 13 }

76 128 Reserved

204 136 EC point Q (DER encoded)

340 760 Reserved

Variable length attribute section

Appendix A. Diagnosis reference information 253

Table 44. Format of the token public key object (Version 3) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

1100 2 Length of SUBJECT attribute in bytes (aa)

1102 2 Length of ID attribute in bytes (bb)

1104 2 Length of LABEL attribute in bytes (cc)

1106 2 Length of APPLICATION attribute in bytes (dd)

1108 20 Reserved

1128 4 Offset of SUBJECT attribute in bytes

1132 4 Offset of ID attribute in bytes

1136 4 Offset of LABEL attribute in bytes

1140 4 Offset of APPLICATION attribute in bytes

1144 40 Reserved

1184 aa+bb+cc+dd+ee Public key attributes (variable length)

1184
+aa+bb+cc+dd+ee

End of public key object

Table 45. Format of the token private key object (Version 0)

Offset (decimal)
188 + Length of field

(bytes) Description

Object header

0 4 Eye catcher for private key object: "PRIV"

4 2 Version: EBCDIC '00'

6 2 Length of object (in bytes)

8 4 Flags (see Table 39 on page 244)

Object type-specific section

12 4 Type attribute: CKK_RSA

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4 Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

72 4 Length in bits of modulus n

76 256 Modulus: modulus n

332 256 Reserved

254 z/OS: z/OS ICSF System Programmer's Guide

Table 45. Format of the token private key object (Version 0) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

588 256 Public exponent e

844 256 Reserved

1100 32 Reserved

1132 256 Private exponent d

1388 256 Reserved

1644 136 Prime p

1780 128 Reserved

1908 128 Prime q

2036 128 Reserved

2172 136 Private exponent d modulo p-1

2300 128 Reserved

2428 128 Private exponent d modulo q-1

2556 128 Reserved

2684 136 CRT coefficient q-1 mod p

2820 128 Reserved

2948 2 Length of SUBJECT attribute in bytes (xx)

2950 2 Length of ID attribute in bytes (yy)

2952 2 Length of LABEL attribute in bytes (zz)

2954 2 Length of APPLICATION attribute in bytes (ww)

2956 20 Reserved

2976 4 Offset of SUBJECT attribute in bytes

2980 4 Offset of ID attribute in bytes

2984 4 Offset of LABEL attribute in bytes

2988 4 Offset of APPLICATION attribute in bytes

2992 40 Reserved

3032 xx+yy+zz+ww Private key attributes (variable length)

3032
+xx+yy+zz+ww

End of private key object

Table 46. Format of the token private key object (Version 1)

Offset (decimal)
188 + Length of field

(bytes) Description

Object header

Appendix A. Diagnosis reference information 255

Table 46. Format of the token private key object (Version 1) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

0 4 Eye catcher for private key object: "PRIV"

4 2 Version: EBCDIC '01'

6 2 Length of object (in bytes)

8 4 Flags (see Table 39 on page 244)

Object type-specific section

12 4 Type attribute: CKK_RSA, CKK_DSA,
CKK_EC, or CKK_DH

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4 Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

Algorithm-specific section (RSA)

72 4 Length in bits of modulus n

76 512 Modulus: modulus n

588 512 Public exponent e

1100 32 Reserved

1132 512 Private exponent d

1644 264 Prime p

1908 256 Prime q

2164 264 Private exponent d modulo p-1

2428 256 Private exponent d modulo q-1

2684 264 CRT coefficient q-1 mod p

Algorithm-specific section (DSA)

72 4 Length in bits of prime p

76 128 Reserved

204 128 Prime p

332 128 Reserved

460 128 Base g

588 236 Reserved

824 20 Value x

844 20 Reserved

864 20 Subprime q

256 z/OS: z/OS ICSF System Programmer's Guide

Table 46. Format of the token private key object (Version 1) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

884 2064 Reserved

Algorithm-specific section (DH)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 236 Reserved

824 20 Value x

844 2104 Reserved

Algorithm-specific section (EC)

72 4 EC params curve constant –

x'00000001' secp192r1
 - { 1 2 840 10045 3 1 1 }
x'00000002' secp224r1
 - { 1 3 132 0 33 }
x'00000003' secp256r1
 - { 1 2 840 10045 3 1 7 }
x'00000004' secp384r1
 - { 1 3 132 0 34 }
x'00000005' secp521r1
 - { 1 3 132 0 35 }
x'00000006' brainpoolP160r1
 - { 1 3 36 3 3 2 8 1 1 1 }
x'00000007' brainpoolP192r1
 - { 1 3 36 3 3 2 8 1 1 3 }
x'00000008' brainpoolP224r1
 - { 1 3 36 3 3 2 8 1 1 5 }
x'00000009' brainpoolP256r1
 - { 1 3 36 3 3 2 8 1 1 7 }
x'0000000A' brainpoolP320r1
 - { 1 3 36 3 3 2 8 1 1 9 }
x'0000000B' brainpoolP384r1
 - { 1 3 36 3 3 2 8 1 1 11 }
x'0000000C' brainpoolP512r1
 - { 1 3 36 3 3 2 8 1 1 13 }

76 64 Reserved

140 66 Value d

206 2742 Reserved

Variable length attribute section

2948 2 Length of SUBJECT attribute in bytes (xx)

2950 2 Length of ID attribute in bytes (yy)

2952 2 Length of LABEL attribute in bytes (zz)

Appendix A. Diagnosis reference information 257

Table 46. Format of the token private key object (Version 1) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

2954 2 Length of APPLICATION attribute in bytes (ww)

2956 20 Reserved

2976 4 Offset of SUBJECT attribute in bytes

2980 4 Offset of ID attribute in bytes

2984 4 Offset of LABEL attribute in bytes

2988 4 Offset of APPLICATION attribute in bytes

2992 40 Reserved

3032 xx+yy+zz+ww Private key attributes (variable length)

3032
+xx+yy+zz+ww

End of private key object

Table 47. Format of the token private key object (Version 2)

Offset (decimal)
188 + Length of field

(bytes) Description

Object header

0 4 Eye catcher for private key object: "PRIV"

4 2 Version: EBCDIC '02'

6 2 Length of object (in bytes)

8 4 Flags (see Table 39 on page 244)

Object type-specific section

12 4 Type attribute: CKK_RSA, CKK_DSA,
CKK_EC, or CKK_DH

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4 Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

Algorithm-specific section (RSA)

72 4 Length in bits of modulus n

76 512 Modulus: modulus n

588 512 Public exponent e

1100 32 Reserved

1132 512 Private exponent d

258 z/OS: z/OS ICSF System Programmer's Guide

Table 47. Format of the token private key object (Version 2) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

1644 264 Prime p

1908 256 Prime q

2164 264 Private exponent d modulo p-1

2428 256 Private exponent d modulo q-1

2684 264 CRT coefficient q-1 mod p

Algorithm-specific section (DSA)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 224 Reserved

812 32 Value x

844 8 Reserved

852 32 Subprime q

884 2064 Reserved

Algorithm-specific section (DH)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 256 Value x

844 4 Length in bits of value x

848 2100 Reserved

Algorithm-specific section (EC)

Appendix A. Diagnosis reference information 259

Table 47. Format of the token private key object (Version 2) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

72 4 EC params curve constant –

x'00000001' secp192r1
 - { 1 2 840 10045 3 1 1 }
x'00000002' secp224r1
 - { 1 3 132 0 33 }
x'00000003' secp256r1
 - { 1 2 840 10045 3 1 7 }
x'00000004' secp384r1
 - { 1 3 132 0 34 }
x'00000005' secp521r1
 - { 1 3 132 0 35 }
x'00000006' brainpoolP160r1
 - { 1 3 36 3 3 2 8 1 1 1 }
x'00000007' brainpoolP192r1
 - { 1 3 36 3 3 2 8 1 1 3 }
x'00000008' brainpoolP224r1
 - { 1 3 36 3 3 2 8 1 1 5 }
x'00000009' brainpoolP256r1
 - { 1 3 36 3 3 2 8 1 1 7 }
x'0000000A' brainpoolP320r1
 - { 1 3 36 3 3 2 8 1 1 9 }
x'0000000B' brainpoolP384r1
 - { 1 3 36 3 3 2 8 1 1 11 }
x'0000000C' brainpoolP512r1
 - { 1 3 36 3 3 2 8 1 1 13 }

76 64 Reserved

140 66 Value d

206 2742 Reserved

Variable length attribute section

2948 2 Length of SUBJECT attribute in bytes (xx)

2950 2 Length of ID attribute in bytes (yy)

2952 2 Length of LABEL attribute in bytes (zz)

2954 2 Length of APPLICATION attribute in bytes (ww)

2956 20 Reserved

2976 4 Offset of SUBJECT attribute in bytes

2980 4 Offset of ID attribute in bytes

2984 4 Offset of LABEL attribute in bytes

2988 4 Offset of APPLICATION attribute in bytes

2992 40 Reserved

3032 xx+yy+zz+ww Private key attributes (variable length)

260 z/OS: z/OS ICSF System Programmer's Guide

Table 47. Format of the token private key object (Version 2) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

3032
+xx+yy+zz+ww+ee

End of private key object

Table 48. Format of the token private key object (Version 3)

Offset (decimal)
188 + Length of field

(bytes) Description

Object header

0 4 Eye catcher for private key object: "PRIV"

4 2 Version: EBCDIC '03'

6 2 Length of object (in bytes)

8 4 Flags (see Table 39 on page 244)

Object type-specific section

12 4 Type attribute: CKK_RSA, CKK_DSA,
CKK_EC, or CKK_DH

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4 Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 2 Reserved

38 2 Length of secure key material (ee)

40 4 Offset to secure key material in bytes

44 28 Reserved

Algorithm-specific section (RSA)

72 4 Length in bits of modulus n

76 512 Modulus: modulus n

588 512 Public exponent e

1100 32 Reserved

1132 512 Private exponent d

1644 264 Prime p

1908 256 Prime q

2164 264 Private exponent d modulo p-1

2428 256 Private exponent d modulo q-1

2684 264 CRT coefficient q-1 mod p

Appendix A. Diagnosis reference information 261

Table 48. Format of the token private key object (Version 3) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

Algorithm-specific section (DSA)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 224 Reserved

812 32 Value x

844 8 Reserved

852 32 Subprime q

884 2064 Reserved

Algorithm-specific section (DH)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 256 Value x

844 4 Length in bits of value x

848 2100 Reserved

Algorithm-specific section (EC)

262 z/OS: z/OS ICSF System Programmer's Guide

Table 48. Format of the token private key object (Version 3) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

72 4 EC params curve constant –

x'00000001' secp192r1
 - { 1 2 840 10045 3 1 1 }
x'00000002' secp224r1
 - { 1 3 132 0 33 }
x'00000003' secp256r1
 - { 1 2 840 10045 3 1 7 }
x'00000004' secp384r1
 - { 1 3 132 0 34 }
x'00000005' secp521r1
 - { 1 3 132 0 35 }
x'00000006' brainpoolP160r1
 - { 1 3 36 3 3 2 8 1 1 1 }
x'00000007' brainpoolP192r1
 - { 1 3 36 3 3 2 8 1 1 3 }
x'00000008' brainpoolP224r1
 - { 1 3 36 3 3 2 8 1 1 5 }
x'00000009' brainpoolP256r1
 - { 1 3 36 3 3 2 8 1 1 7 }
x'0000000A' brainpoolP320r1
 - { 1 3 36 3 3 2 8 1 1 9 }
x'0000000B' brainpoolP384r1
 - { 1 3 36 3 3 2 8 1 1 11 }
x'0000000C' brainpoolP512r1
 - { 1 3 36 3 3 2 8 1 1 13 }

76 64 Reserved

140 66 Value d

206 2742 Reserved

Variable length attribute section

2948 2 Length of SUBJECT attribute in bytes (xx)

2950 2 Length of ID attribute in bytes (yy)

2952 2 Length of LABEL attribute in bytes (zz)

2954 2 Length of APPLICATION attribute in bytes (ww)

2956 20 Reserved

2976 4 Offset of SUBJECT attribute in bytes

2980 4 Offset of ID attribute in bytes

2984 4 Offset of LABEL attribute in bytes

2988 4 Offset of APPLICATION attribute in bytes

2992 40 Reserved

3032 xx+yy+zz+ww+ee Private key attributes (variable length)

Appendix A. Diagnosis reference information 263

Table 48. Format of the token private key object (Version 3) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

3032
+xx+yy+zz+ww+ee

End of private key object

Table 49. Format of the token secret key object (Version 0)

Offset (decimal)
188 + Length of field

(bytes) Description

Object header

0 4 Eye catcher for secret key object: "SECK"

4 2 Version: EBCDIC '00'

6 2 Length of the object in bytes

8 4 Flags (see Table 39 on page 244)

Object type-specific section

12 4 Type of key: CKK_DES, CKK_DES2, CKK_DES3, CKK_AES

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4 Key generate mechanism
CK_UNAVAILABLE_INFORMATION

36 2 Length of the key in bytes

38 32 Reserved

70 64 VALUE: value of the key

134 538 Reserved

672 4 Usage counter field

676 2 Reserved

678 2 Length of LABEL attribute in bytes (xx)

680 2 Length of APPLICATION attribute in bytes (yy)

682 2 Length of the ID attribute in bytes (zz)

684 20 Reserved

704 4 Offset of LABEL attribute in bytes

708 4 Offset of APPLICATION attribute in bytes

712 4 Offset of the ID attribute in bytes

716 40 Reserved

756 xx+yy+zz Secret key attributes (variable length)

264 z/OS: z/OS ICSF System Programmer's Guide

Table 49. Format of the token secret key object (Version 0) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

756
+xx+yy+zz

End of secret key object

Table 50. Format of the token secret key object (Version 1)

Offset (decimal)
188 + Length of field

(bytes) Description

Object header

0 4 Eye catcher for secret key object: "SECK"

4 2 Version: EBCDIC '01'

6 2 Length of the object in bytes

8 4 Flags (see Table 39 on page 244)

Object type-specific section

12 4 Type of key:

CKK_DES, CKK_DES2, CKK_DES3, CKK_BLOWFISH,
CKK_RC4, CKK_GENERIC_SECRET, and CKK_AES.

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4 Key generate mechanism
CK_UNAVAILABLE_INFORMATION

36 2 Length of the key in bytes

38 32 Reserved

70 256 VALUE: value of the key

326 346 Reserved

672 4 Usage counter field

676 2 Reserved

678 2 Length of LABEL attribute in bytes (xx)

680 2 Length of APPLICATION attribute in bytes (yy)

682 2 Length of the ID attribute in bytes (zz)

684 20 Reserved

704 4 Offset of LABEL attribute in bytes

708 4 Offset of APPLICATION attribute in bytes

712 4 Offset of the ID attribute in bytes

716 40 Reserved

Appendix A. Diagnosis reference information 265

Table 50. Format of the token secret key object (Version 1) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

756 xx+yy+zz Secret key attributes (variable length)

756
+xx+yy+zz

End of secret key object

Table 51. Format of the token secret key object (Version 3)

Offset (decimal)
188 + Length of field

(bytes) Description

Object header

0 4 Eye catcher for secret key object: "SECK"

4 2 Version: EBCDIC '03'

6 2 Length of the object in bytes

8 4 Flags (see Table 39 on page 244)

Object type-specific section

12 4 Type of key:

CKK_DES, CKK_DES2, CKK_DES3, CKK_BLOWFISH,
CKK_RC4, CKK_GENERIC_SECRET, and CKK_AES.

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4 Key generate mechanism
CK_UNAVAILABLE_INFORMATION

36 2 Length of the key in bytes

38 2 Length of secure key material (ee)

40 4 Offset to secure key material in bytes

44 26 Reserved

70 256 VALUE: value of the key

326 342 Reserved

668 1 Key field flags:
Bit 0

Key check value present
Bits 1-7

Reserved for IBM's use

672 4 Usage counter field

676 2 Reserved

678 2 Length of LABEL attribute in bytes (xx)

266 z/OS: z/OS ICSF System Programmer's Guide

Table 51. Format of the token secret key object (Version 3) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

680 2 Length of APPLICATION attribute in bytes (yy)

682 2 Length of the ID attribute in bytes (zz)

684 20 Reserved

704 4 Offset of LABEL attribute in bytes

708 4 Offset of APPLICATION attribute in bytes

712 4 Offset of the ID attribute in bytes

716 40 Reserved

756 xx+yy+zz+ee Secret key attributes (variable length)

756
+xx+yy+zz+ee

End of secret key object

Table 52. Format of the token domain parameters object (Version 1)

Offset (decimal)
188 + Length of field

(bytes) Description

Object header

0 4 Eye catcher for token domain object: "DOMP"

4 2 Version: EBCDIC '01'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 39 on page 244)

Object type-specific section

12 4 TYPE attribute: CKK_DSA or CKK_DH

16 28 Reserved

Algorithm-specific section (DSA)

44 4 Length in bits of prime p

48 128 Reserved

176 128 Prime p

304 128 Reserved

432 128 Base g

560 20 Reserved

580 20 Subprime q

600 636 Reserved

Algorithm-specific section (DH)

44 4 Length in bits of prime p

Appendix A. Diagnosis reference information 267

Table 52. Format of the token domain parameters object (Version 1) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

48 4 Reserved

52 256 Prime p

308 256 Reserved

564 256 Base g

820 416 Reserved

Variable length attribute section

1236 2 Length of LABEL attribute in bytes (aa)

1238 2 Length of APPLICATION attribute in bytes (bb)

1240 20 Reserved

1260 4 Offset of LABEL attribute in bytes

1264 4 Offset of APPLICATION attribute in bytes

1268 40 Reserved

1308 aa+bb Domain parameters attributes (variable length)

1308
+aa+bb

End of domain parameters object

Table 53. Format of the token domain parameters object (Version 2)

Offset (decimal)
188 + Length of field

(bytes) Description

Object header

0 4 Eye catcher for token domain object: "DOMP"

4 2 Version: EBCDIC '02'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 39 on page 244)

Object type-specific section

12 4 TYPE attribute: CKK_DSA

16 28 Reserved

Algorithm-specific section (DSA)

44 4 Length in bits of prime p

48 256 Prime p

304 256 Base g

560 8 Reserved

568 32 Subprime q

268 z/OS: z/OS ICSF System Programmer's Guide

Table 53. Format of the token domain parameters object (Version 2) (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

600 636 Reserved

Variable length attribute section

1236 2 Length of LABEL attribute in bytes (aa)

1238 2 Length of APPLICATION attribute in bytes (bb)

1240 20 Reserved

1260 4 Offset of LABEL attribute in bytes

1264 4 Offset of APPLICATION attribute in bytes

1268 40 Reserved

1308 aa+bb Domain parameters attributes (variable length)

1308
+aa+bb

End of domain parameters object

Table 54. Format of the token data object

Offset (decimal)
188 + Length of field

(bytes) Description

Object header

0 4 Eye catcher for data object: "DATA"

4 2 Version: EBCDIC '00'

6 2 Length of object, in bytes

8 4 Flags (see Table 39 on page 244)

Object type-specific section

12 4 Reserved for IBM's use

16 28 Reserved for IBM's use

44 2 Length of VALUE attribute in bytes (aa)

46 2 Length of OBJECT_ID attribute in bytes (bb)

48 2 Length of LABEL attribute in bytes (cc)

50 2 Length of APPLICATION attribute in bytes (dd)

52 2 Length of ID attribute in bytes (ee)

54 22 Reserved for IBM's use

76 4 Offset of VALUE attribute in bytes

80 4 Offset of OBJECT_ID attribute in bytes

84 4 Offset of LABEL attribute in bytes

88 4 Offset of APPLICATION attribute in bytes

Appendix A. Diagnosis reference information 269

Table 54. Format of the token data object (continued)

Offset (decimal)
188 + Length of field

(bytes) Description

92 4 Offset of ID attribute in bytes

96 44 Reserved for IBM's use

140 aa + bb + cc + dd + ee Data attributes (variable length)

140 + aa + bb
+ cc + dd + ee

End of data object

Common record format (KDSR)
The common record format (KDSR) is a record format for all KDS types (CKDS, PKDS, and TKDS) that
allows for reference date tracking. KDSR format records were introduced in ICSF FMID HCR77A1. Version
X'02' of the KDSR records have three distinct sections: a 140-byte fixed area, a variable length area that
contains the cryptographic key material (key token), and a variable length metadata area that is used to
store reference dates and other data.

Format of the KDSR format record (Version X'02')
KDSR record sections:

• Fixed data area – 140 bytes
• Cryptographic key material (key token) – variable length
• Metadata area – variable length

270 z/OS: z/OS ICSF System Programmer's Guide

Table 55. Format of the KDSR record fixed data area

Offset
(Decimal)

Number of
bytes Field name Description

0 72 VSAM Key CKDS
Bytes 0-63

Key Label.
Bytes 64-71

Key Type.

PKDS
Bytes 0-63

Key Label.
Bytes 64-71

Reserved.

TKDS
Bytes 0-31

Token name.
Bytes 32-39

Sequence number.
Byte 40

Blank for token.
Character "T" for clear token
object.
Character "Y" for secure
token object.

Bytes 41-43
Blank characters.

Bytes 44-71
Binary zeros.

72 8 Reserved.

80 1 Record Version Version of the KDSR record format.

81 1 KDS Type 1=CKDS, 2=PKDS, 3=TKDS.

82 1 KDS Flags Bit
Meaning when set On

0
The key within the key material
field is a partial key. (CKDS only).

1
Label must be unique. (CKDS
only).

2
Preactive -> Active state audited.

3
Active -> Deactivated state
audited.

83 1 KFP Count Count of key fingerprints.

Appendix A. Diagnosis reference information 271

Table 55. Format of the KDSR record fixed data area (continued)

Offset
(Decimal)

Number of
bytes Field name Description

84 4 KDS Length Length of the entire KDS record
including key material and metadata.

88 8 Creation Date The initial date the KDS record was
created in the format yyyymmdd.

96 8 Creation Time The initial time the KDS record was
created in the format hhmmssth.

104 8 Update Date The most recent date that this record
was updated, in the format
yyyymmdd or binary zero if the
record has not been updated since
creation.

112 8 Update Time The most recent time that this record
was updated, in the format
hhmmssth or binary zero if the record
has not been updated since creation.

120 4 Key Material Length Length of the key material portion of
the record.

124 4 Key Material Offset Offset of the key material portion of
the record, which is calculated from
the start of the record.

128 4 Metadata Length Length of the metadata area.

132 4 Metadata Offset Offset of the metadata area in the
record, which is calculated from the
start of the record.

136 4 Reserved Reserved.

Table 56. Format of KDSR metadata area

Offset
(Decimal)

Number of
bytes Field name Description

0 1 KDSR_MD_VERSION

1 7 Reserved for IBM use.

8 8 KDSR_MD_REFDATE_STCKE Reference date in STCKE format,
high 8 bytes. Low bit in Byte 5
represents one second.

16 8 KDSR_MD_REFDATE Reference date in the format
yyyymmdd.

24 8 KDSR_MD_STARTDATE Key material validity start date in the
format yyyymmdd.

32 8 KDSR_MD_ENDDATE Key material validity end date in the
format yyyymmdd.

40 Variable Reserved for IBM use.

272 z/OS: z/OS ICSF System Programmer's Guide

Table 57. Format of KDSR variable-length metadata block

Offset
(Decimal)

Number of
bytes Field name Description

0 2 KDSR_MD_TLV_TAG Tag for block.

2 2 KDSR_MD_TLV_LEN Length of the block, which includes
the length of the tag and length
fields.

4 Variable KDSR_MD_DATA Data.

AES key token format

AES internal fixed-length key token
Fixed-length AES key tokens are 64 bytes and consist of an internal key token identifier and a token
version number, reserved fields, a flag byte containing various flag bits, and a token validation value.

Depending on the flag byte, the key token either contains an encrypted key, a clear key, or the key is
absent. An encrypted key is encrypted under an AES master key that is identified by a master-key
verification pattern (MKVP) in the key token. The key token contains a two-byte integer that specifies the
length of the clear-key value in bits, valued to 0, 128, 192, or 256, and a two-byte integer that specifies
the length of the encrypted-key value in bytes, valued to 0 or 32. An LRC checksum byte of the clear-key
value is also in the key token.

All keys in fixed-length AES key tokens are DATA keys. If the flag byte indicates that a control vector (CV)
is present, it must be all binary zeros. An all-zero CV represents the CV value of an AES DATA key. If a key
is present without a control vector in a key token, that is accepted and the key is interpreted as an AES
DATA key.

The AES internal key token is the structure that is used to hold AES keys that are either encrypted with the
AES master-key or in clear text format.

Table 58 on page 273 shows the format for an AES internal key token.

Table 58. AES internal fixed-length key token format

Offset (Dec) Length of
field (Bytes) Description

00 1 X'01' (flag indicating that this is an internal key token)

01 3 Implementation-dependent bytes (X'000000' for ICSF)

04 1 Key token version number (X'04')

05 1 Reserved - must be set to X'00'

Appendix A. Diagnosis reference information 273

Table 58. AES internal fixed-length key token format (continued)

Offset (Dec) Length of
field (Bytes) Description

06 1 Flag byte
Bit

Meaning When Set On
0

Encrypted key and master key verification pattern (MKVP) are present.

Off for a clear key token. On for an encrypted key token.

1
Control vector (CV) value in this token has been applied to the key.

2
No key is present or the AES MKVP is not present if the key is encrypted.

3- 7
Reserved. Must be set to 0.

07 1 1-byte LRC checksum of clear key value.

08 8 Master key verification pattern (MKVP).

(For a clear AES key token, this value is hex zeros.)

16 32 Key value, if present. Contains either:

• A 256-bit encrypted-key value. The clear key value is padded on the right
with binary zeros, and the entire 256-bit value is encrypted under the AES
master-key using AES CBC mode with an initialization vector of binary zeros.

• A 128-bit, 192-bit, or 256-bit clear-key value left-aligned and padded on the
right with binary zeros for the entire 256-bit field.

48 8 8-byte control vector.

(For a clear AES key token, this value is hex zeros.)

56 2 2-byte integer that specifies the length in bits of the clear key value.

58 2 2-byte integer that specifies the length in bytes of the encrypted key value.

(For a clear AES key token, this value is hex zeros.)

60 4 Token validation value (TVV).

Token validation value
ICSF uses the token validation value (TVV) to verify that a token is valid. The TVV prevents a key token
that is not valid or that is overlaid from being accepted by ICSF. It provides a checksum to detect a
corruption in the key token.

When an ICSF callable service generates a key token, it generates a TVV and stores the TVV in bytes
60-63 of the key token. When an application program passes a key token to a callable service, ICSF
checks the TVV. To generate the TVV, ICSF performs a twos complement ADD operation (ignoring carries
and overflow) on the key token, operating on four bytes at a time, starting with bytes 0-3 and ending with
bytes 56-59.

274 z/OS: z/OS ICSF System Programmer's Guide

DES key token formats

DES fixed-length key token
Fixed-length DES key tokens are 64 bytes and consist of a DES-enciphered key, a control vector, various
flag bits, a token identifier and version number, reserved fields, and a token-validation value. An internal
key-token also includes a master-key verification pattern or master-key version number, depending on the
key-token version number.

If an internal fixed-length DES key-token has a key present, it contains a key multiply-enciphered by a
DES master key. If an external fixed-length DES key-token has a key present, it contains a key multiply-
enciphered by a key-encrypting key.

Version X'00' tokens are single-length, double-length, and triple-length keys for all key types. DATA key
tokens with zero control vectors are version X'00' for single-length keys and version X'01' for double-
length and triple-length keys.

Table 59 on page 275 shows the format for a DES internal key token.

Table 59. DES internal fixed-length key token format

Offset (Dec) Length of
field (Bytes) Description

00 1 X'01' (flag indicating this is an internal key token).

01 3 Implementation-dependent bytes (X'000000' for ICSF).

04 1 Key token version number (X'00' or X'01' for CCA tokens and X'F0' or X'F1' for
RCS tokens).

05 1 Reserved (X'00').

06 1 Flag byte
Bit

Meaning When Set On
0

Encrypted key and master key verification pattern (MKVP) are present.
1

Control vector (CV) value in this token has been applied to the key.
2

Key is used for no control vector (NOCV) processing. Valid for transport
keys only.

3-6
Reserved.

7
Export prohibited.

Appendix A. Diagnosis reference information 275

Table 59. DES internal fixed-length key token format (continued)

Offset (Dec) Length of
field (Bytes) Description

07 1 Bit
Meaning When Set On

0-2
Key value encryption method.

• 000 - The key is encrypted by using the original CCA method (ECB).
• 001 - The encrypted key is wrapped using the enhanced method and

SHA-1 (WRAP-ENH).
• 010 - The encrypted key is wrapped using the enhanced method and

SHA-256 (WRAPENH2). Requires CV bit ENH-ONLY to be enabled. Only
valid with version X’00’ tokens.

These bits are ignored if the token contains no key or a clear key.
3-7

Reserved.

08 8 When the compliant-tag bit is off (bit 58 in the CV): Master Key Verification
Pattern (MKVP).

When the compliant-tag bit is on (bit 58 in the CV):
Offset | Length

Description
0 | 5

Truncated MKVP.
5 | 2

Reserved.
7 | 1

Key Derivation Function (KDF).

When KDF is X'01', the token is not considered compliant-tagged. Throughout
the publications, they are referred to as DES KDF 01 tokens. Only key tokens
with a KDF higher than X'01' are referred to as compliant-tagged.

16 8 A single-length key, the left half of a double-length key, or Part A of a triple-
length key. The value is encrypted under the master key when flag bit 0 is on.
Otherwise, it is in the clear.

24 8 X'0000000000000000' if a single-length key, or the right half of a double-
length key, or Part B of a triple-length key. The right half of the double-length
key or Part B of the triple-length key is encrypted under the master key when
flag bit 0 is on. Otherwise, it is in the clear.

32 8 The control vector (CV) for a single-length key or the left half of the control
vector for a double-length key.

40 8 X'0000000000000000' if a single-length key or the right half of the control
vector for a double-length operational key.

48 8 X'0000000000000000' if a single-length key or double-length key, or Part C of
a triple-length key. Part C of a triple-length key is encrypted under the master
key when flag bit 0 is on. Otherwise, it is in the clear.

56 3 Reserved (X'000000').

276 z/OS: z/OS ICSF System Programmer's Guide

Table 59. DES internal fixed-length key token format (continued)

Offset (Dec) Length of
field (Bytes) Description

59 1 Key length for zero CV DATA keys:
Value

Meaning
B'00000000'

Single-length key (version 0 only).
B'00010000'

Double-length key (version 1 only).
B'00100000'

Triple-length key (version 1 only).
All other values are reserved and undefined.

60 4 Token validation value (TVV).

Note: A fixed-length key token that is stored in a non-KDSR CKDS will not have an MKVP or TVV. Before
such a key token is used, the MKVP is copied from the CKDS header record, and the TVV is calculated and
placed in the token.

Table 60 on page 277 shows the format for a DES external fixed-length key token.

Table 60. Format of DES external fixed-length key tokens

Offset (Dec) Length of
field (Bytes)

Description

00 1 X'02' (flag indicating an external key token).

01 1 Reserved (X'00').

02 2 Implementation-dependent bytes (X'0000' for ICSF).

04 1 Key token version number (X'00' or X'01').

05 1 Reserved (X'00').

06 1 Flag byte.
Bit

Meaning When Set On
0

Encrypted key is present.
1

Control vector (CV) value has been applied to the key.

Other bits are reserved and are binary zeros.

Appendix A. Diagnosis reference information 277

Table 60. Format of DES external fixed-length key tokens (continued)

Offset (Dec) Length of
field (Bytes)

Description

07 1 Flag byte.
Bit

Meaning When Set On
0-2

Key value encryption method.

• 000 - The key is encrypted by using the original CCA method (ECB).
• 001 - The encrypted key is wrapped using the enhanced method and

SHA-1 (WRAP-ENH).
• 010 - The encrypted key is wrapped using the enhanced method and

SHA-256 (WRAPENH2). Requires CV bit ENH-ONLY to be enabled. Only
valid with version X’00’ tokens.

These bits are ignored if the token contains no key or a clear key.
3-7

Reserved.

08 8 Reserved (X'0000000000000000').

16 8 Single-length key or left half of a double-length key, or Part A of a triple-length
key. The value is encrypted under a transport key-encrypting key when flag bit
0 is on. Otherwise, it is in the clear.

24 8 X'0000000000000000' if a single-length key or right half of a double-length
key, or Part B of a triple-length key. The right half of a double-length key or
Part B of a triple-length key is encrypted under a transport key-encrypting key
when flag bit 0 is on. Otherwise, it is in the clear.

32 8 Control vector (CV) for single-length key or left half of CV for double-length
key.

40 8 X'0000000000000000' if single-length key or right half of CV for double-
length key.

48 8 X'0000000000000000' if a single-length key, double-length key, or Part C of a
triple-length key. This key part is encrypted under a transport key-encrypting
key when flag bit 0 is on. Otherwise, it is in the clear.

56-58 4 Reserved (X'000000').

59 1 Key length for zero CV DATA keys.
Value

Meaning
B'00000000'

Single-length key (version 0 only).
B'00010000'

Double-length key (version 1 only).
B'00100000'

Triple-length key (version 1 only).
All other values are reserved and undefined.

60-63 4 Token validation value.

278 z/OS: z/OS ICSF System Programmer's Guide

External RKX DES key token
Table 61 on page 279 defines an external DES key-token called an RKX key-token. An RKX key-token is a
special token used exclusively by the Remote Key Export (CSNDRKX) and DES key-storage callable
services (for example, Key Record Write). No other callable services use or reference an RKX key-token or
key-token record.

Note: Callable services other than CSNDRKX and the DES key-storage do not support RKX key tokens or
RKX key token records.

As can be seen in the table, RKX key tokens are 64 bytes in length, have a token identifier flag (X'02'), a
token version number (X'10'), and room for encrypted keys like normal CCA DES key tokens. Unlike
normal CCA DES key-tokens, RKX key tokens do not have a control vector, flag bits, and a token-validation
value. In addition, they have a confounder value, a MAC value, and room for a third encrypted key.

Table 61. External RKX DES key-token format, version X'10'

Offset Length Meaning

00 1 X'02' (a token identifier flag that indicates an external key-token)

01 3 Reserved, binary zero

04 1 The token version number (X'10')

05 2 Reserved, binary zero

07 1 Key length in bytes, including confounder

08 8 Confounder

16 8 Key left

24 8 Key middle (binary zero if not used)

32 8 Key right (binary zero if not used)

40 8 Rule ID

The trusted block rule identifier used to create this key token. A subsequent
call to Remote Key Export (CSNDRKX) can use this token with a trusted
block rule that references the rule ID that must have been used to create
this token. The trusted block rule can be compared with this rule ID for
verification purposes.

The Rule ID is an 8-byte string of ASCII characters, left justified and padded
on the right with space characters. Acceptable characters are A...Z, a...z,
0...9, - (X'2D'), and _ (X'5F'). All other characters are reserved for future use.

48 8 Reserved, binary zero

56 8 MAC value

ISO 16609 TDES CBC-mode MAC, computed over the 56 bytes starting at
offset 0 and including the encrypted key value and the rule ID using the
same MAC key that is used to protect the trusted block itself.

This MAC value guarantees that the key and the rule ID cannot be modified
without detection, providing integrity and binding the rule ID to the key
itself. This MAC value must verify with the same trusted block used to create
the key, thus binding the key structure to that specific trusted block.

Note:

1. A fixed, randomly derived variant is exclusive-ORed with the MAC key before it is used to encipher the
generated or exported key and confounder.

Appendix A. Diagnosis reference information 279

2. The MAC key is located within a trusted block (internal format) and can be recovered by decipherment
under a variant of the PKA master key.

3. The trusted block is originally created in external form by the CSNDTBC callable service and then
converted to internal form by the CSNDPKI callable service prior to the CSNDRKX call.

DES null key token
Table 62 on page 280 shows the format for a fixed length DES null key token.

Table 62. Format of Null Key Tokens

Bytes Description

0 X'00' (flag indicating this is a null key token).

1–15 Reserved (set to binary zeros).

16–23 Single-length encrypted key, or left half of double-length encrypted key, or Part A of triple-
length encrypted key.

24–31 X'0000000000000000' if a single-length encrypted key, the right half of double-length
encrypted key, or Part B of triple-length encrypted key.

32–39 X'0000000000000000' if a single-length encrypted key or double-length encrypted key.

40–47 Reserved (set to binary zeros).

48–55 Part C of a triple-length encrypted key.

56–63 Reserved (set to binary zeros).

Variable-length symmetric key token formats

Variable-length symmetric key token
The following table presents the format for a variable-length symmetric key token. The length of the token
depends on the key type and algorithm.

Table 63. Variable-length symmetric key token

Offset
(Dec)

Length of
Field
(Bytes) Description

Header

0 1 Token flag
X'00'

for null tokens
X'01'

for internal tokens
X'02'

for external tokens

1 1 Reserved (X'00')

2 2 Length of the token in bytes

4 1 Token version number X'05' (May be X'00' for null tokens)

5 3 Reserved (X'000000')

280 z/OS: z/OS ICSF System Programmer's Guide

Table 63. Variable-length symmetric key token (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

Wrapping information

8 1 Key material state.
X'00'

no key present (internal or external)
X'01'

key is clear (internal)
X'02'

key is encrypted under a key-encrypting key (external)
X'03'

key is encrypted under the master key (internal)

9 1 Key verification pattern (KVP) type.
X'00'

No KVP
X'01'

AES master key verification pattern
X'02'

key-encrypting key verification pattern
X'03'

Truncated AES master key verification pattern with compliance information

10 16 Non-compliant tagged token: Verification pattern of the key used to wrap the payload.

Compliant-tagged token: 5 bytes of the AES MKVP followed by 3 bytes of internal
compliance information.

Values are left justified.

26 1 Wrapping method - This value indicates the wrapping method used to protect the data
in the encrypted section.
X'00'

key is in the clear
X'02'

AESKW
X'03'

PKOAEP2

Appendix A. Diagnosis reference information 281

Table 63. Variable-length symmetric key token (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

27 1 Hash algorithm used in wrapping algorithm.

• For wrapping method X'00'
X'00'

None. For clear key tokens.
• For wrapping method X'02'

X'02'
SHA-256

• For wrapping method X'03'
X'01'

SHA-1
X'02'

SHA-256
X'04'

SHA-384
X'08'

SHA-512

28 1 Payload version
X'00'

Variable-length payload
X'01'

Fixed-length payload
All other values are reserved and must not be used.

29 1 Reserved (X'00')

Associated data section

30 1 Associated data version (X'01')

31 1 Reserved (X'00')

32 2 Length of the associated data in bytes: adl

34 1 Length of the key name in bytes: kl

35 1 Length of the IBM extended associated data in bytes: iead

36 1 Length of the installation-definable associated data in bytes: uad

37 1 Reserved (X'00')

38 2 Length of the payload in bits: pl

40 1 Reserved (X'00')

282 z/OS: z/OS ICSF System Programmer's Guide

Table 63. Variable-length symmetric key token (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

41 1 Type of algorithm for which the key can be used
X'01'

DES
X'02'

AES
X'03'

HMAC

42 2 Key type:

For algorithm AES:
X'0001'

CIPHER
X'0002'

MAC
X'0003'

EXPORTER
X'0004'

IMPORTER
X'0005'

PINPROT
X'0006'

PINCALC
X'0007'

PINPRW
X'0009'

DKYGENKY
X'000A'

SECMSG
X'000B'

KDKGENKY

For algorithm HMAC:
X'0002'

MAC

For algorithm DES:
X'0008'

DESUSECV

44 1 Key-usage field count (kuf) - (1 byte)
Key-usage field information defines restrictions on the use of
the key.

Appendix A. Diagnosis reference information 283

Table 63. Variable-length symmetric key token (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

45 kuf * 2 Key-usage fields (kuf * 2 bytes)

• For HMAC algorithm keys, refer to Table 65 on page 285.
• For AES algorithm Key-Encrypting keys (Exporter or Importer), refer to Table 72 on

page 298.
• For AES algorithm CIPHER keys, refer to Table 73 on page 300.
• For AES algorithm MAC keys, refer to Table 66 on page 287.
• For AES algorithm PINCALC keys, refer to Table 67 on page 288.
• For AES algorithm PINPROT keys, refer to Table 68 on page 289.
• For AES algorithm PINPRW keys, refer to Table 69 on page 291.
• For AES algorithm DKYGENKY keys, refer to Table 70 on page 293.
• For AES algorithm SECMSG keys, refer to Table 71 on page 297.
• For AES algorithm KDKGENKY keys, refer to Table 76 on page 306.
• For DESUSECV keys, refer to Table 64 on page 285.

45 + kuf
* 2

1 Key-management field count (kmf) - (2 byte):

• For AES and HMAC keys: 2 (no pedigree information) or 3 (has pedigree information)
• For DESUSECV keys: 1

Key-management field information describes how the data is to be managed or helps
with management of the key material.

46 + kuf
* 2

kuf * 2 Key-management fields (kmf * 2 bytes):

• For AES and HMAC algorithm keys, refer to Table 74 on page 302.
• For DESUSECV keys, refer to Table 75 on page 306.

46 + kuf
* 2 + kmf
* 2

kl Key name

46 + kuf
* 2 + kmf
* 2 + kl

iead IBM extended associated data

46 + kuf
* 2 + kmf
* 2 + kl +
iead

uad Installation-defined associated data

Clear key or encrypted payload

284 z/OS: z/OS ICSF System Programmer's Guide

Table 63. Variable-length symmetric key token (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

30 + adl (pl+7)/8 Encrypted AESKW payload (internal keys): The encrypted AESKW payload is created
from the unencrypted AESKW payload which is made up of the ICV/pad length/hash
options and hash length/hash options/hash of the associated data/key material/
padding. See unencrypted AESKW payload.

Encrypted PKOAEP2 payload (external keys): The encrypted PKOAEP2 payload is
created using the PKCS #1 v1.2 encoding method for a given hash algorithm. The
message (M) inside the encoding contains: [2 bytes: bit length of key] || [clear HMAC
key]. M is encoded using OAEP and then encrypted with an RSA public key according to
the standard.

Clear key payload: When the key is clear, only the key material will be in the payload
padded to the nearest byte with binary zeros.

Table 64. DESUSECV key-usage fields

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 1

45 2 Key-usage field 1

High-order byte:
B'0000 0000'

Reserved

All unused bits are reserved and must be zero.

Low-order byte:
B'0000 0000'

Reserved

All unused bits are reserved and must be zero.

Table 65. HMAC algorithm key-usage fields

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 2

Appendix A. Diagnosis reference information 285

Table 65. HMAC algorithm key-usage fields (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

45 2 Key-usage field 1

High-order byte:

1xxx xxxx
Key can be used for generate.

x1xx xxxx
Key can be used for verify.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx 1xxx
The key can only be used in UDXs (used in KGN, KIM, KEX).

xxxx 0xxx
The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

47 2 Key-usage field 2

High-order byte:

1xxx xxxx
SHA-1 hash method is allowed for the key.

x1xx xxxx
SHA-224 hash method is allowed for the key.

xx1x xxxx
SHA-256 hash method is allowed for the key.

xxx1 xxxx
SHA-384 hash method is allowed for the key.

xxxx 1xxx
SHA-512 hash method is allowed for the key.

All unused bits are reserved and must be zero.

Low-order byte:

All bits are reserved and must be zero.

286 z/OS: z/OS ICSF System Programmer's Guide

Table 66. AES algorithm MAC key associated data

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 2 – 3
Count is based on whether the key is DK enabled or not:

kuf
DK enabled

2
No

3
Yes

45 2 Key-usage field 1

High-order byte:
B'00xx xxxx'

Undefined.
B'01xx xxxx'

Key cannot be used for generate; key can be used for verify.
B'10xx xxxx'

Key can be used for generate; key cannot be used for verify.
B'11xx xxx*'

Key can be used for generate and verify. Not valid if offset 50 is X'01'.

All unused bits are reserved and must be zero.

Low-order byte:
xxxx 1xxx

The key can only be used in UDXs (used in KGN, KIM, KEX).
xxxx 0xxx

The key can be used in both UDXs and CCA.
xxxx xuuu

Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

47 2 Key-usage field 2

High-order byte:
X'01'

CMAC mode.

All unused bits are reserved and must be zero.

Low-order byte:
B'0xxx xxxx'

Key cannot be used by CSNBPTR2 to verify authentication data using NIST SP
800-38B CMAC for ISO-4 to ISO-4 PAN change. Only valid with key usage VERIFY.

B'1xxx xxxx'
Key can be used by CSNBPTR2 to verify authentication data using NIST SP 800-38B
CMAC for ISO-4 to ISO-4 PAN change. Only valid with key usage VERIFY.

All bits are reserved and must be zero.

Appendix A. Diagnosis reference information 287

Table 66. AES algorithm MAC key associated data (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

49 2 Key-usage field 3

High-order byte when DK enabled:
X'01'

PIN_OP (DKPINOP)
X'03'

PIN_ADMIN1 (DKPINAD1)
X'04'

PIN_ADMIN2 (DKPINAD2)

All unused values are reserved and must not be used.

Low-order byte:

X'01'
DK enabled.

All unused values are reserved and must not be used.

Table 67. AES algorithm PINCALC key associated data

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 3

45 2 Key-usage field 1

High-order byte:
B'00xx xxxx'

Undefined.
B'10xx xxxx'

Key can be used for generate; key cannot be used for verify.

All unused bits are reserved and must be zero.

Low-order byte:
xxxx 1xxx

The key can only be used in UDXs (used in KGN, KIM, KEX).
xxxx 0xxx

The key can be used in both UDXs and CCA.
xxxx xuuu

Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

288 z/OS: z/OS ICSF System Programmer's Guide

Table 67. AES algorithm PINCALC key associated data (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

47 2 Key-usage field 2

High-order byte:
X'00'

Key can be used for Cipher Block Chaining (CBC).

All unused values are reserved and must not be used.

Low-order byte:

All bits are reserved and must be zero.

49 2 Key-usage field 3

High-order byte when DK enabled:
X'01'

PIN_OP (DKPINOP)

All unused values are reserved and must not be used.

Low-order byte:

X'01'
DK enabled.

All unused values are reserved and must not be used.

Table 68. AES algorithm PINPROT key associated data

Offset
(Dec)

Length of Field
(Bytes) Description

44 1 Key usage fields count (kuf): 3 if value at offset 50 = X’01’ (DK enabled), or 4 if value at offset 50 = X’00’ (no field format
specification).

45 2 Key-usage field 1

High-order byte:

B'00xx xxxx'
Undefined.

B'01xx xxxx'
Key cannot be used for encryption; key can be used for decryption. This is an inbound PIN protection key.

B'10xx xxxx'
Key can be used for encryption; key cannot be used for decryption. This is an outbound PIN protection key.

B'11xx xxxx'
Undefined.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx 1xxx
The key can only be used in UDXs (used in KGN, KIM, KEX).

xxxx 0xxx
The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

Appendix A. Diagnosis reference information 289

Table 68. AES algorithm PINPROT key associated data (continued)

Offset
(Dec)

Length of Field
(Bytes) Description

47 2 Key-usage field 2

High-order byte:

X'00'
Key can be used for Cipher Block Chaining (CBC).

All unused values are reserved and undefined.

Key-usage field 2

Low-order byte:

Inbound key (value at offset 45 is B'01xx xxxx')

B’xxx1 xxxx’
Key can be used to verify an encrypted PIN (EPINVER).

B’xxx0 xxxx’
Key cannot be used to verify an encrypted PIN.

B’xxxx 1xxx’
Key can be used to generate an alternate clear PIN (CPINGENA).

B’xxxx 0xxx’
Key cannot be used to generate an alternate clear PIN.

B’xxxx x1xx’
Key can be used to translate an encrypted PIN (PINXLATE).

B’xxxx x0xx’
Key cannot be used to translate an encrypted PIN.

B’xxxx xx1x’
Key can be used to reformat an encrypted PIN (REFORMAT).

B’xxxx xx0x’
Key cannot be used to reformat an encrypted PIN.

B’xxxx xxx1’
Key can be used to restrictively reformat an ISO-4 encrypted PIN to an ISO-1 encrypted PIN (RFMT4TO1).

B’xxxx xxx0’
Key cannot be used to reformat an ISO-4 encrypted PIN to an ISO-1 encrypted PIN.

All unused bits are reserved and must be zero.

Outbound key (value at offset 45 is B'10xx xxxx')

B’xx1x xxxx’
Key can be used to encrypt a clear PIN (CPINENC).

B’xx0x xxxx’
Key cannot be used to encrypt a clear PIN.

B’xxx1 xxxx’
Key can be used to generate an encrypted PIN (EPINGEN).

B’xxx0 xxxx’
Key cannot be used to generate an encrypted PIN.

B’xxxx x1xx’
Key can be used to translate an encrypted PIN (PINXLATE).

B’xxxx x0xx’
Key cannot be used to translate an encrypted PIN.

B’xxxx xx1x’
Key can be used to reformat an encrypted PIN (REFORMAT).

B’xxxx xx0x’
Key cannot be used to reformat an encrypted PIN.

B’xxxx xxx1’
Key can be used to restrictively reformat an ISO-1 encrypted PIN to an ISO-4 encrypted PIN (RFMT1TO4).

B’xxxx xxx0’
Key cannot be used to restrictively reformat an ISO-1 encrypted PIN to an ISO-4 encrypted PIN.

All unused bits are reserved and must be zero.

290 z/OS: z/OS ICSF System Programmer's Guide

Table 68. AES algorithm PINPROT key associated data (continued)

Offset
(Dec)

Length of Field
(Bytes) Description

49 2 Key-usage field 3, high-order byte

No field format specification (value at offset 50 is X’00’)

Value
Meaning

X'00'
No field format specification (NOFLDFMT)

All unused values are reserved and undefined.

DK enabled (value at offset 50 is X'01')

X'01'
PIN_OP (DKPINOP)

X'02'
PIN_OPP (DKPINOPP)

X'03'
PIN_ADMIN1 (DKPINAD1)

All unused values are reserved and undefined.

Key-usage field 3, low-order byte

Field format identifier:

X'00'
No field format specification (NOFLDFMT)

X'01'
DK enabled (DKPINOP, DKPINOPP, DKPINAD1)

All unused values are reserved and undefined.

51 2 Key-usage field 4, high-order byte

PIN block format usage:

B'xxxx xxx1'
Allow ISO-4

All undefined bits are reserved and must be zero.

Key-usage field 4, low-order byte

All bits are reserved and must be zero.

Table 69. AES algorithm PINPRW key associated data

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 3

Appendix A. Diagnosis reference information 291

Table 69. AES algorithm PINPRW key associated data (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

45 2 Key-usage field 1

High-order byte:
B'00xx xxxx'

Undefined.
B'01xx xxxx'

Key cannot be used for generate; key can be used for verify.
B'10xx xxxx'

Key can be used for generate; key cannot be used for verify.
B'11xx xxxx'

Undefined.

All unused bits are reserved and must be zero.

Low-order byte:
xxxx 1xxx

The key can only be used in UDXs (used in KGN, KIM, KEX).
xxxx 0xxx

The key can be used in both UDXs and CCA.
xxxx xuuu

Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

47 2 Key-usage field 2

High-order byte:
X'01'

CMAC mode

All unused values are reserved and must not be used.

Low-order byte:

All bits are reserved and must be zero.

49 2 Key-usage field 3

High-order byte when DK enabled:
X'01'

PIN_OP (DKPINOP)

All unused values are reserved and must not be used.

Low-order byte:

X'01'
DK enabled.

All unused values are reserved and must not be used.

292 z/OS: z/OS ICSF System Programmer's Guide

Table 70. AES algorithm DKYGENKY key associated data

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 2, 4-51

Count is based on the type of key to diversify (value of offset 45):
Value at offset 45

Type of key to diversify / kuf count
X'00'

D-ALL / kuf count: 2
X'01'

D-CIPHER / kuf count: 4
X'02'

D-MAC / kuf count: 4 (not DK enabled) or 5 (DK enabled)
X'03'

D-EXP / kuf count: 6
X'04'

D-IMP / kuf count: 6
X'05'

D-PPROT / kuf count: 5
X'06'

D-PCALC / kuf count: 5
X'07'

D-PPRW / kuf count: 5
X'08'

D-SECMSG / kuf count: 4
X'09'

D-KDKGKY / kuf count: 13, 25, 37, 49

Each key-usage field is 2 bytes in length. The value in this field indicates how many 2-
byte key usage fields follow.

Appendix A. Diagnosis reference information 293

Table 70. AES algorithm DKYGENKY key associated data (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

45 2 Key-usage field 1

High-order byte: Defines the key type to be generated.
X'00'

Any type listed below (D-ALL)
X'01'

CIPHER (D-CIPHER)
X'02'

MAC (D-MAC)
X'03'

EXPORTER (D-EXP)
X'04'

IMPORTER (D-IMP)
X'05'

PINPROT (D-PPROT)
X'06'

PINCALC (D-PCALC)
X'07'

PINPRW (D-PPRW)
X'08'

SECMSG (D-SECMSG)
X'09'

KDKGENKY (D-KDKGKY)

All other values are reserved and undefined.

Low-order byte:
xxxx 1xxx

The key can only be used in UDXs (used in KGN, KIM, KEX).
xxxx 0xxx

The key can be used in both UDXs and CCA.
xxxx xuuu

Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

294 z/OS: z/OS ICSF System Programmer's Guide

Table 70. AES algorithm DKYGENKY key associated data (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

47 2 Key-usage field 2: Indicates the key usage.

High-order byte (key-usage field level of control):
B'1xxx xxxx'

The key usage fields of the key to be generated must be equal (KUF-MBE) to the
related generated key usage fields that start with key usage field 3 below.

B'0xxx xxxx'
The key usage fields of the key identifier to be generated must be permitted (KUF-
MBP) based on the related generated-key usage fields that start with key usage field
3 below. A key to be diversified is not permitted to have a higher level of usage than
the related key usage fields permit. The key to be diversified is only permitted to
have key usage that is less than or equal to the related key usage fields. The UDX-
ONLY bit of the related key usage fields must always be equal in both the generating
key and the generated key.

Undefined when the value at offset 45 = X'00' (D-ALL). All other values are reserved and
undefined.

Low-order byte (key-derivation sequence level):
X'00'

DKYL0. Generate a key based on the key usage byte at offset 45.
X'01'

DKYL1. Generate a level 0 diversified key with key type DKYGENKY.
X'02'

DKYL2. Generate a level 1 diversified key with key type DKYGENKY.

All other values are reserved and undefined.

Appendix A. Diagnosis reference information 295

Table 70. AES algorithm DKYGENKY key associated data (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

49 (if
defined)

2 Key-usage field 3 (related generated key usage fields):

These values determine allowable key usage of key to be generated.

Meaning depends on value of offset 45:
X'01'

Same as key-usage field 1 of AES CIPHER key.
X'02'

Same as key-usage field 1 of AES MAC key.
X'03'

Same as key-usage field 1 of AES EXPORTER key.
X'04'

Same as key-usage field 1 of AES IMPORTER key.
X'05'

Same as key-usage field 1 of AES PINPROT key.
X'06'

Same as key-usage field 1 of AES PINCALC key.
X'07'

Same as key-usage field 1 of AES PINPRW key.
X'08'

Same as key-usage field 1 of AES SECMSG key.
X'09'

Same as key-usage field 1 of AES KDKGENKY key.

51 (if
defined)

2 Key-usage field 4 (related generated key usage fields):

These values determine allowable key usage of key to be generated.

Meaning depends on value of offset 45:
X'01'

Same as key-usage field 2 of AES CIPHER key.
X'02'

Same as key-usage field 2 of AES MAC key.
X'03'

Same as key-usage field 2 of AES EXPORTER key.
X'04'

Same as key-usage field 2 of AES IMPORTER key.
X'05'

Same as key-usage field 2 of AES PINPROT key.
X'06'

Same as key-usage field 2 of AES PINCALC key.
X'07'

Same as key-usage field 2 of AES PINPRW key.
X'08'

Same as key-usage field 2 of AES SECMSG key.
X'09'

Same as key-usage field 2 of AES KDKGENKY key (1st KUF of required 1st active/
passive related key-usage field blocks).

296 z/OS: z/OS ICSF System Programmer's Guide

Table 70. AES algorithm DKYGENKY key associated data (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

53 (if
defined)

2 Key-usage field 5 (related generated key usage fields):

These values determine allowable key usage of key to be generated.

Meaning depends on value of offset 45:
X'02'

Same as key-usage field 3 of AES MAC key.
X'03'

Same as key-usage field 3 of AES EXPORTER key.
X'04'

Same as key-usage field 3 of AES IMPORTER key.
X'05'

Same as key-usage field 3 of AES PINPROT key.
X'06'

Same as key-usage field 3 of AES PINCALC key.
X'07'

Same as key-usage field 3 of AES PINPRW key.
X'09'

Same as key-usage field 3 of AES KDKGENKY key (1st KUF of required 1st active/
passive related key-usage field blocks).

55 (if
defined)

2 Key-usage field 6 (related generated key usage fields):

These values determine allowable key usage of key to be generated.

Meaning depends on value of offset 45:
X'03'

Same as key-usage field 4 of AES EXPORTER key.
X'04'

Same as key-usage field 4 of AES IMPORTER key.
X'05'

Same as key-usage field 4 of AES PINPROT key.
X'09'

Same as key-usage field 4 of AES KDKGENKY key (1st KUF of required 1st active/
passive related key-usage field blocks).

Table 71. AES algorithm SECMSG key associated data

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 2

Appendix A. Diagnosis reference information 297

Table 71. AES algorithm SECMSG key associated data (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

45 2 Key-usage field 1

High-order byte: Secure message encryption enablement:
Value

Meaning
X'00'

Enable the encryption of PINs in an EMV secure message (SMPIN).

All other values are reserved and undefined.

Low-order byte:
xxxx 1xxx

The key can only be used in UDXs (used in KGN, KIM, KEX).
xxxx 0xxx

The key can be used in both UDXs and CCA.
xxxx xuuu

Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

47 2 Key-usage field 2: Indicates the key usage.

High-order byte: Service restriction:
Value

Meaning
X'00'

Any verb can use this key (ANY-USE).
X'01'

Only CSNBDPC can use this key (DPC-ONLY).

All other values are reserved and undefined.

Low-order byte (reserved).

All unused bits are reserved and must be zero

Table 72. AES algorithm KEK key-usage fields

Offset (Dec)
Length of Field
(Bytes) Description

44 1 Key-usage field count (kuf): 4

298 z/OS: z/OS ICSF System Programmer's Guide

Table 72. AES algorithm KEK key-usage fields (continued)

Offset (Dec)
Length of Field
(Bytes) Description

45 2 Key-usage field 1, high-order byte

EXPORTER:

1xxx xxx0
Key can be used for EXPORT.

x1xx xxx0
Key can be used for TRANSLAT.

xx1x xxx0
Key can be used for GEN-OPEX.

xxx1 xxx0
Key can be used for GEN-IMEX.

xxxx 1xx0
Key can be used for GEN-EXEX.

xxxx x1x0
Key can be used for GEN-PUB.

0000 0001
Key can wrap an AES or DES key using the Key Block Binding key wrapping method as defined in ISO/DIS 20038
(EXPTT31D).

All unused bits are reserved and must be zero.

IMPORTER:

1xxx xxx0
Key can be used for IMPORT.

x1xx xxx0
Key can be used for TRANSLAT.

xx1x xxx0
Key can be used for GEN-OPIM.

xxx1 xxx0
Key can be used for GEN-IMEX.

xxxx 1xx0
Key can be used for GEN-IMIM.

xxxx x1x0
Key can be used for GEN-PUB.

0000 0001
Key can unwrap an AES or DES key using the Key Block Binding key wrapping method as defined in ISO/DIS 20038
(IMPTT31D).

All unused bits are reserved and must be zero.

Key-usage field 1, low-order byte

UDX control:

xxxx 1xxx
The key can only be used in UDXs (used in KGN, KIM, KEX).

xxxx 0xxx
The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

47 2 Key-usage field 2

High-order byte:

0000 0001
Key can wrap a TR-31 key block version “D” (VARDRV-D). Only valid if value at offset 45 is B’0000 0001’ (EXPTT31D or
IMPTT31D).

1xxx xxx0
Key can wrap a TR-31 key block. Not valid if value at offset 45 is B’0000 0001’ (EXPTT31D or IMPTT31D).

All unused bits are reserved and must be zero.

Low-order byte:

xxxx xxx1
This KEK can export a key in RAW format.

All unused bits are reserved and must be zero

Appendix A. Diagnosis reference information 299

Table 72. AES algorithm KEK key-usage fields (continued)

Offset (Dec)
Length of Field
(Bytes) Description

49 2 Key-usage field 3

High-order byte:

1xxx xxxx
Key can wrap DES keys

x1xx xxxx
Key can wrap AES keys

xx1x xxxx
Key can wrap HMAC keys

xxx1 xxxx
Key can wrap RSA keys

xxxx 1xxx
Key can wrap ECC keys

All unused bits are reserved and must be zero.

Low-order byte:

All bits are reserved and must be zero.

51 2 Key-usage field 4

High-order byte:

1xxx xxxx
Key can wrap DATA class keys

x1xx xxxx
Key can wrap KEK class keys

xx1x xxxx
Key can wrap PIN class keys

xxx1 xxxx
Key can wrap DERIVATION class keys

xxxx 1xxx
Key can wrap CARD class keys

xxxx x1xx
Key can wrap CVAR class keys

All unused bits are reserved and must be zero.

Low-order byte:

All bits are reserved and must be zero.

Table 73. AES algorithm CIPHER key associated data

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 2

300 z/OS: z/OS ICSF System Programmer's Guide

Table 73. AES algorithm CIPHER key associated data (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

45 2 Key-usage field 1

High-order byte:
1xxx xxxx

Key can be used for encryption.
x1xx xxxx

Key can be used for decryption.
xx1x xxxx

Key can be used for data translate.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx 1xxx
The key can only be used in UDXs (used in KGN, KIM, KEX).

xxxx 0xxx
The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

47 2 Key-usage field 2

High-order byte:
X'00'

Key can be used for Cipher Block Chaining (CBC).
X'01'

Key can be used for Electronic Code Book (ECB).
X'02'

Key can be used for Cipher Feedback (CFB).
X'03'

Key can be used for Output Feedback (OFB).
X'04'

Key can be used for Galois/Counter Mode (GCM)
X'05'

Key can be used for XEX-based Tweaked CodeBook Mode with CipherText Stealing
(XTS)

X'FF'
Key can be used for any mode of encryption

All unused values are reserved and must not be used.

Low-order byte:

All bits are reserved and must be zero.

Appendix A. Diagnosis reference information 301

Table 74. AES and HMAC algorithm key-management fields

Offset
(Dec)

Length of
Field
(Bytes) Description

49 1 Key-management field count (kmf): 2 or 3.

50 2 Key-management field 1.

High-order byte:
1xxx xxxx

Allow export using symmetric key.
x1xx xxxx

Allow export using unauthenticated asymmetric key.
xx1x xxxx

Allow export using authenticated asymmetric key.
xxx1 xxxx

Allow export in RAW format.
xxxx 1xxx

Allow export to CPACF protected key format.
xxxx xxx1

Compliant-tagged key. Applies to AES only.
All other bits are reserved and must be zero.

Low-order byte:

--symmetric--
1xxx xxxx

Prohibit export using DES key.
x1xx xxxx

Prohibit export using AES key.
--asymmetric--
xxxx 1xxx

Prohibit export using RSA key.
All other bits are reserved and must be zero.

302 z/OS: z/OS ICSF System Programmer's Guide

Table 74. AES and HMAC algorithm key-management fields (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

48 + kuf
* 2

2 Key-management field 2.

High-order byte:
11xx xxxx

Key, if present, is incomplete. Key requires at least 2 more parts.
10xx xxxx

Key, if present, is incomplete. Key requires at least 1 more part.
01xx xxxx

Key, if present, is incomplete. Key can be completed or have more parts added.
00xx xxxx

Key, if present, is complete. No more parts can be added.
All other bits are reserved and must be zero.

Low-order byte (Security History):
xxx1 xxxx

Key was encrypted with an untrusted KEK.
xxxx 1xxx

Key was in a format without type/usage attributes.
xxxx x1xx

Key was encrypted with key weaker than itself.
xxxx xx1x

Key was in a non-CCA format.
xxxx xxx1

Key was encrypted in ECB mode.
All other bits are reserved and must be zero.

Appendix A. Diagnosis reference information 303

Table 74. AES and HMAC algorithm key-management fields (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

50 + kuf
* 2

2 Key-management field 3 - Pedigree (this field may or may not be present).

Indicates how key was originally created and how it got into the current system.

High-order byte: Pedigree Original.
X'00'

Unknown (Key Token Build2, Key Translate2).
X'01'

Other - method other than those defined here, probably used in UDX.
X'02'

Randomly Generated (Key Generate2).
X'03'

Established by key agreement (ECC Diffie-Hellman).
X'04'

Created from cleartext key components (Key Part Import2).
X'05'

Entered as a cleartext key value (Key Part Import2, Secure Key Import2).
X'06'

Derived from another key.
X'07'

Cleartext keys or key parts that were entered at TKE and secured from there to the
target card (operational key load).

All unused values are reserved and undefined.

304 z/OS: z/OS ICSF System Programmer's Guide

Table 74. AES and HMAC algorithm key-management fields (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

50 + kuf
* 2
(cont’d)

2 (cont’d) Low-order byte: Pedigree Current.
X'00'

Unknown (Key Token Build2).
X'01'

Other - method other than those defined here, probably used in UDX.
X'02'

Randomly Generated (Key Generate2).
X'03'

Established by key agreement (ECC Diffie-Hellman).
X'04'

Created from cleartext key components (Key Part Import2).
X'05'

Entered as a cleartext key value (Key Part Import2, Secure Key Import2).
X'06'

Derived from another key.
X'07'

Imported from a CCA 05 variable length token with pedigree field (Symmetric Key
Import2).

X'08'
Imported from a CCA 05 variable length token with no pedigree field (Symmetric Key
Import2).

X'09'
Imported from a CCA token that had a CV.

X'0A'
Imported from a CCA token that had no CV or a zero CV.

X'0B'
Imported from a TR-31 key block that contained a CCA CV (ATTR-CV option) (TR-31
Import).

X'0C'
Imported from a TR-31 key block that did not contain a CCA CV (TR-31 Import).

X'0D'
Imported using PKCS 1.2 RSA encryption (Symmetric Key Import2).

X'0E'
Imported using PKCS OAEP encryption (Symmetric Key Import2).

X'0F'
Imported using PKA92 RSA encryption (Symmetric Key Import2).

X'10'
Imported using RSA ZERO-PAD encryption (Symmetric Key Import2).

X'11'
Converted from a CCA token that had a CV (Key Translate2).

X'12'
Converted from a CCA token that had no CV or a zero CV (Key Translate2).

X'13'
Cleartext keys or key parts that were entered at TKE and secured from there to the
target card (operational key load).

Appendix A. Diagnosis reference information 305

Table 74. AES and HMAC algorithm key-management fields (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

50 + kuf
* 2
(cont’d)

2 (cont’d) Low-order byte: Pedigree Current.
X'14'

Exported from a CCA 05 variable length token with pedigree field (Symmetric Key
Export).

X'15'
Exported from a CCA 05 variable length token with no pedigree field (Symmetric Key
Export).

X'16'
Exported using PKCS OAEP encryption (Symmetric Key Export).

All unused values are reserved and undefined.

Table 75. DESUSECV key-management fields

Offset
(Dec)

Length of
Field
(Bytes) Description

47 1 Key-management field count (kmf): 1

48 2 Key-management field 1

High-order byte:
B'0000 0000'

Reserved
All unused bits are reserved and must be zero.

Low-order byte:
B'0000 0000'

Reserved
All unused bits are reserved and must be zero.

Table 76. AES algorithm KDKGENKY key-usage fields

Offset (Dec) Length of
Field (Bytes)

Description

44 1 Key-usage field count (kuf): 13, 25, 37, or 49. Each key-usage field is two
bytes in length.

306 z/OS: z/OS ICSF System Programmer's Guide

Table 76. AES algorithm KDKGENKY key-usage fields (continued)

Offset (Dec) Length of
Field (Bytes)

Description

45 2 Key-usage field 1, high-order byte

Key diversification type:
X'00'

Entity type A (KDKTYPEA)
X'01'

Entity type B (KDKTYPEB)

All other values are reserved and undefined.

Key-usage field 1, low-order byte

User-defined extension control:
B'xxxx 1xxx'

Key can only be used in UDXs (used in KGN, KIM, KEX).
B'xxxx 0xxx'

Key can be used in UDXs and CCA.
B'xxxx xuuu'

Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

47 amb + acb +
apb + awp

Key-usage field 2 (active/passive key-usage field block)

For the format of an active/passive key-usage field block, see the 'AES
DKYGENKY and AES KDKGENKY active/passive related key-usage field block'
table in z/OS Cryptographic Services ICSF Application Programmer's Guide.

At least one active/passive related KUF block is required and a maximum of
four blocks is allowed. The sequence of the blocks is in ascending numerical
order, based on the numeric value of the key type of the key to be derived or
generated, found at offset 0 of the block header. This is the required order of
the blocks:

1. Active AES MAC/passive AES MAC related KUF block (amb bytes, where
amb = 0 or 24).

2. Active AES CIPHER/passive AES CIPHER related KUF block (acb bytes,
where acb = 0 or 24).

3. Active AES PINPROT/passive AES PINPROT related KUF block (apb bytes,
where apb = 0 or 24).

4. Active AES EXPORTER/passive AES EXPORTER related KUF block (awp
bytes, where awp = 0 or 24).

where amb + acb + apb + awp = 24, 48, 72, or 96.

Variable-length symmetric null key token
The following table shows the format for a variable-length symmetric null key token.

Table 77. Variable-length symmetric null token

Bytes Description

0 X'00' Token identifier (indicates that this is a null key token).

Appendix A. Diagnosis reference information 307

Table 77. Variable-length symmetric null token (continued)

Bytes Description

1 Version, X'00'.

2-3 X'0008' Length of the key token structure.

4-7 Ignored (zero).

PKA key token formats
As with DES key tokens, the first byte of a PKA key token indicates the type of token. If the first byte of the
key identifier is X'1E' or X'1F', this indicates that it is a PKA key token.

A first byte of X'1E' indicates an external token with a cleartext public key and optionally a private key that
is either in cleartext or enciphered by a transport key-encrypting key.

A first byte of X'1F' indicates an internal token with a cleartext public key and a private key that is
enciphered by the master key and ready for internal use.

PKA tokens are of variable length because they contain either RSA or ECC key values, which are variable in
length. Consequently, length parameters precede all PKA token parameters. The maximum allowed size is
3500 bytes. PKA key tokens consist of a token header, any required sections, and optional sections, which
depend on the token type.

A PKA key token can be a public or private key token, and a private key token can be internal or external.
Therefore, there are three basic types of tokens, each of which can contain either RSA or ECC information:

• Public key tokens
• Private external key tokens
• Private internal key tokens

Public key tokens contain only the public key. Private key tokens contain the public and private key pair.

Internal PKA tokens
PKA private internal key tokens contain both private and public key information. There is no need for an
internal token with only the public key information because the public values are in the clear.

The first byte of X'1F' indicates an internal token with a cleartext public key and a private key that is
enciphered with a PKA master key and ready for local (internal) use.

The format of a PKA private internal key token is similar to that of a private external token. The only
differences are changes in the private key section and the addition of some internal information at the end
of the token. This last section starts with the eyecatcher 'PKTN' rather than with a token or section
marker.

PKA null key token
Table 78 on page 308 shows the format for a PKA null key token.

Table 78. Format of PKA Null Key Tokens

Bytes Description

0 X'00' Token identifier (indicates that this is a null key token).

1 Version, X'00'

2–3 X'0008' Length of the key token structure.

4–7 Ignored (should be zero).

308 z/OS: z/OS ICSF System Programmer's Guide

RSA key token formats
This topic describes the different RSA key token formats.

RSA public key token
An RSA public key token contains the following sections:

• A required token header, starting with the token identifier X'1E'
• A required RSA public key section, starting with the section identifier X'04'

Table 79 on page 309 presents the format of an RSA public key token. All length fields are in binary. All
binary fields (exponents, lengths, and so on) are stored with the high-order byte first.

Table 79. RSA Public Key Token

Offset (Dec)
Number of
Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx+yyy.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, "xxx".

008 002 Public key modulus length in bits.

010 002 RSA public key modulus field length in bytes, "yyy".

012 xxx Public key exponent (this is generally a 1-, 3-, or 64- to 512-byte
quantity), e. e must be odd and 1<e<n. (Frequently, the value of e is 216+1)

12+xxx yyy Modulus, n.

RSA private external key token
An RSA private external key token contains the following sections:

• A required PKA token header starting with the token identifier X'1E'
• A required RSA private key section starting with one of the following section identifiers:

– X'02' which indicates a modulus-exponent form RSA private key section (not optimized) with
modulus length of up to 1024 bits.

– X'08' which indicates an optimized Chinese Remainder Theorem form private key section with
modulus bit length of up to 4096.

– X'09' which indicates a modulus-exponent form RSA private key section (not optimized) with
modulus length of up to 4096 bits.

– X'30' which indicates a modulus-exponent form RSA private key section with modulus length of up to
4096 bits with an AES object protection key.

Appendix A. Diagnosis reference information 309

– X'31' which indicates an Chinese Remainder Theorem form private key section with modulus bit
length of up to 4096 bits with an AES object protection key.

• A required RSA public key section, starting with the section identifier X'04'
• An optional private key name section, starting with the section identifier X'10'

Table 80 on page 310 presents the basic record format of an RSA private external key token. All length
fields are in binary. All binary fields (exponents, lengths, and so on) are stored with the high-order byte
first. All binary fields (exponents, modulus, and so on) in the private sections of tokens are right-justified
and padded with zeros to the left.

Table 80. RSA Private External Key Token Basic Record Format

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token. The private key is
either in cleartext or enciphered with a transport key-encrypting key.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

RSA Private Key Section (required)

• For 1024-bit Modulus-Exponent form refer to “RSA private key token,
1024-bit modulus-exponent external format” on page 311.

• For 4096-bit Modulus-Exponent form refer to “RSA private key token,
4096-bit modulus-exponent external format” on page 312.

• For 4096-bit Chinese Remainder Theorem form refer to “RSA private
key token, 4096-bit chinese remainder Theorem external format” on
page 313.

• For 4096-bit Modulus-Exponent form with AES OPK refer to “RSA
private key, 4096-bit modulus-exponent format with AES encrypted
OPK section (X'30') external form” on page 315.

• For 4096-bit Chinese Remainder Theorem form with AES OPK refer
to “RSA private key, 4096-bit chinese remainder Theorem format
with AES encrypted OPK section (X'31') external form” on page 319.

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, "xxx".

008 002 Public key modulus length in bits.

010 002 RSA public key modulus field length in bytes, which is zero for a private
token.

Note: In an RSA private key token, this field should be zero. The RSA
private key section contains the modulus.

310 z/OS: z/OS ICSF System Programmer's Guide

Table 80. RSA Private External Key Token Basic Record Format (continued)

Offset (Dec) Number of Bytes Description

012 xxx Public key exponent, e (this is generally a 1-, 3-, or 64- to 512-byte
quantity). e must be odd and 1<e<n. (Frequently, the value of e is
216+1 (=65,537).

Private Key Name (optional)

000 001 X'10', section identifier, private key name.

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-justified, padded with space
characters (X'20'). An access control system can use the private key
name to verify that the calling application is entitled to use the key.

RSA private key token, 1024-bit modulus-exponent external format
Table 81. RSA Private Key Token, 1024-bit Modulus-Exponent external format

Offset (Dec) Number of Bytes Description

000 001 X'02', section identifier, RSA private key, modulus-exponent format
(RSA-PRIV)

001 001 X'00', version.

002 002 Length of the RSA private key section X'016C' (364 decimal).

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to
the section end. This hash value is checked after an enciphered private
key is deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'00'

Unencrypted RSA private key subsection identifier.
X'82'

Encrypted RSA private key subsection identifier.

029 001 Reserved, binary zero.

030 020 SHA-1 hash of the optional key-name section. If there is no key-name
section, then 20 bytes of X'00'.

050 004 Key use flag bits.
Bit

Meaning When Set On
0

Key management usage permitted.
1

Signature usage not permitted.
6

The key is translatable.

All other bits reserved, set to binary zero.

Appendix A. Diagnosis reference information 311

Table 81. RSA Private Key Token, 1024-bit Modulus-Exponent external format (continued)

Offset (Dec) Number of Bytes Description

054 006 Reserved; set to binary zero.

060 024 Reserved; set to binary zero.

Start of the optionally-encrypted secure subsection.

084 024 Random number, confounder.

108 128 Private-key exponent, d. d=e-1 mod((p-1)(q-1)), and 1<d<n where e is
the public exponent.

End of the optionally-encrypted subsection; the confounder field
and the private-key exponent field are enciphered for key
confidentiality when the key format and security flags (offset 28)
indicate that the private key is enciphered. They are enciphered
under a double-length transport key using the ede2 algorithm.

236 128 Modulus, n. n=pq where p and q are prime and 1<n<21024.

RSA private key token, 4096-bit modulus-exponent external format
This RSA private key token and the external X'09' token is supported on a CCA Crypto Express
coprocessor.

Table 82. RSA Private Key Token, 4096-bit Modulus-Exponent external format

Offset (Dec) Number of Bytes Description

000 001 X'09', section identifier, RSA private key, modulus-exponent format
(RSAMEVAR).

001 001 X'00', version.

002 002 Length of the RSA private key section 132+ddd+nnn+xxx.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to
the section end. This hash value is checked after an enciphered private
key is deciphered for use.

024 002 Length of the encrypted private key section 8+ddd+xxx.

026 002 Reserved; set to binary zero.

028 001 Key format and security:
X'00'

Unencrypted RSA private key subsection identifier.
X'82'

Encrypted RSA private key subsection identifier.

029 001 Reserved, set to binary zero.

030 020 SHA-1 hash of the optional key-name section. If there is no key-name
section, then 20 bytes of X'00'.

312 z/OS: z/OS ICSF System Programmer's Guide

Table 82. RSA Private Key Token, 4096-bit Modulus-Exponent external format (continued)

Offset (Dec) Number of Bytes Description

050 001 Key use flag bits.
Bit

Meaning When Set On
0

Key management usage permitted.
1

Signature usage not permitted.
6

The key is translatable

All other bits reserved, set to binary zero.

051 001 Reserved; set to binary zero.

052 048 Reserved; set to binary zero.

100 016 Reserved; set to binary zero.

116 002 Length of private exponent, d, in bytes: ddd.

118 002 Length of modulus, n, in bytes: nnn.

120 002 Length of padding field, in bytes: xxx.

122 002 Reserved; set to binary zero.

Start of the optionally-encrypted secure subsection.

124 008 Random number, confounder.

132 ddd Private-key exponent, d. d=e-1 mod((p-1)(q-1)), and 1<d<n where e is
the public exponent.

132+ddd xxx X'00' padding of length xxx bytes such that the length from the start of
the random number above to the end of the padding field is a multiple
of eight bytes.

End of the optionally-encrypted subsection; the confounder field
and the private-key exponent field are enciphered for key
confidentiality when the key format and security flags (offset 28)
indicate that the private key is enciphered. They are enciphered
under a double-length transport key using the ede2 algorithm.

132+ddd+xxx nnn Modulus, n. n=pq where p and q are prime and 1<n<24096.

RSA private key token, 4096-bit chinese remainder Theorem external format
This RSA private key token with up to 2048-bit modulus is supported on all coprocessors. The modulus
size is increased to 4096-bit on the z9 EC, z9 BC, z10 EC, z10 BC, or later machines with the Nov. 2007 or
later version of the licensed internal code installed on the CCA Crypto Express coprocessor.

Table 83. RSA Private Key Token, 4096-bit Chinese Remainder Theorem external format

Offset (Dec) Number of Bytes Description

000 001 X'08', section identifier, RSA private key, CRT format (RSA-CRT)

001 001 X'00', version.

Appendix A. Diagnosis reference information 313

Table 83. RSA Private Key Token, 4096-bit Chinese Remainder Theorem external format (continued)

Offset (Dec) Number of Bytes Description

002 002 Length of the RSA private-key section, 132 + ppp + qqq + rrr + sss +
uuu + xxx + nnn.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to
the end of the modulus.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'40'

Unencrypted RSA private-key subsection identifier, Chinese
Remainder form.

X'42'
Encrypted RSA private-key subsection identifier, Chinese
Remainder form.

029 001 Reserved; set to binary zero.

030 020 SHA-1 hash of the optional key-name section and any following
optional sections. If there are no optional sections, then 20 bytes of
X'00'.

050 004 Key use flag bits.
Bit

Meaning When Set On
0

Key management usage permitted.
1

Signature usage not permitted.
6

The key is translatable.

All other bits reserved, set to binary zero.

054 002 Length of prime number, p, in bytes: ppp.

056 002 Length of prime number, q, in bytes: qqq.

058 002 Length of dp, in bytes: rrr.

060 002 Length of dq, in bytes: sss.

062 002 Length of U, in bytes: uuu.

064 002 Length of modulus, n, in bytes: nnn.

066 004 Reserved; set to binary zero.

070 002 Length of padding field, in bytes: xxx.

072 004 Reserved, set to binary zero.

076 016 Reserved, set to binary zero.

092 032 Reserved; set to binary zero.

Start of the optionally-encrypted secure subsection.

124 008 Random number, confounder.

314 z/OS: z/OS ICSF System Programmer's Guide

Table 83. RSA Private Key Token, 4096-bit Chinese Remainder Theorem external format (continued)

Offset (Dec) Number of Bytes Description

132 ppp Prime number, p.

132 + ppp qqq Prime number, q

132 + ppp +
qqq

rrr dp = d mod(p - 1)

132 + ppp +
qqq + rrr

sss dq = d mod(q - 1)

132 + ppp +
qqq + rrr + sss

uuu U = q –1mod(p).

132 + ppp +
qqq + rrr + sss
+ uuu

xxx X'00' padding of length xxx bytes such that the length from the start of
the random number above to the end of the padding field is a multiple
of eight bytes.

End of the optionally-encrypted secure subsection; all of the fields
starting with the confounder field and ending with the variable
length pad field are enciphered for key confidentiality when the key
format-and-security flags (offset 28) indicate that the private key is
enciphered. They are enciphered under a double-length transport
key using the TDES (CBC outer chaining) algorithm.

132 + ppp +
qqq + rrr + sss
+ uuu + xxx

nnn Modulus, n. n = pq where p and q are prime and 1<n<24096.

RSA private key, 4096-bit modulus-exponent format with AES encrypted OPK
section (X'30') external form
This RSA private key token is supported on Crypto Express3 and later coprocessors. Associated data
version 4 is supported on Crypto Express6 and later coprocessors with the July 2019 or later licensed
internal code (LIC).

Table 84. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') external form

Offset
(bytes)

Length (bytes) Description

000 001 Section identifier:

X'30'
RSA private key, ME format with AES encrypted OPK.

001 001 Section version number (X'00').

002 002 Section length: 122 + nnn + ppp

004 002 Length of “Associated Data” section

006 002 Length of payload data: ppp

008 002 Reserved, binary zero.

Start of Associated Data

Appendix A. Diagnosis reference information 315

Table 84. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') external form
(continued)

Offset
(bytes)

Length (bytes) Description

010 001 Associated Data Version:

X'02'
Version 2

X'04'
Version 4

011 001 Key format and security flag:

X'00'
Unencrypted ME RSA private-key subsection identifier

X'82'
Encrypted ME RSA private-key subsection identifier

012 001 Key source flag:

Reserved, binary zero.

013 001 When associated data section version is X'02': Reserved, binary zero.

When associated data section version is X'04': Compliance and export control byte.

Bit
Meaning

B'1xxx xxxx'
Compliant-tagged key.

B'0xxx xxxx'
Non-compliant-tagged key.

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK).

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE).

All other bits are reserved and must be zero.

014 001 Hash type:

X'00'
Clear key

X'02'
SHA-256

015 032 When associated data section version is X'02': SHA-256 hash of all optional sections that
follow the public key section, if any. Otherwise, 32 bytes of binary zero.

When associated data section version is X'04': Hash value of:

1. The public key section (section identifier X'04') and
2. All optional sections that follow the public key section, if any.

If there are no optional sections, the hash covers only the public keys section.

047 001 Reserved, binary zero.

316 z/OS: z/OS ICSF System Programmer's Guide

Table 84. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') external form
(continued)

Offset
(bytes)

Length (bytes) Description

048 002 When associated data section version is X'02': Reserved, binary zero.

When associated data section version is X'04':

Usage bytes:

• Offset 48:

Bit
Meaning

B'1xxx xxxx'
Digital Signature usage is allowed (U-DIGSIG). Services: CSNDDSG, CSNDDSV,
CSNDT34B, CSNDT34D.

B'x1xx xxxx'
Non-Repudiation usage is allowed (U-NONRPD). Services: CSNDDSG, CSNDDSV.

B'xx1x xxxx'
Key Encipherment usage is allowed (U-KEYENC). Services: CSNDSYG, CSNDSYX,
CSNDSYI, CSNDSYI2, CSNDT34R, CSNDPKE, CSNDPKD.

B'xxx1 xxxx'
Data Encipherment usage is allowed (U-DATENC). Services: CSNDPKE, CSNDPKD.

B'xxxx 1xxx'
Key agreement usage is allowed (U-KEYAGR).

B'xxxx x1xx'
keyCertSign usage is allowed (U-KCRTSN). Services: CSNDDSG, CSNDDSV.

B'xxxx xx1x'
Certificate Revocation List Sign usage is allowed (U-CRLSN). Services: CSNDDSG,
CSNDDSV.

B'xxxx xxx1'
Only encipher operations are allowed during key agreement (U-ENCONL).

• Offset 49:

Bit
Meaning

B'1xxx xxxx'
Only decipher operations are allowed during key agreement (U-DECONL).

Appendix A. Diagnosis reference information 317

Table 84. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') external form
(continued)

Offset
(bytes)

Length (bytes) Description

050 001 When associated data section version is X'02': Key-usage and translation control flag:

Key-usage:

B'11xx xxxx'
Only key unwrapping (KM-ONLY).

B'10xx xxxx'
Both signature generation and key unwrapping (KEY-MGMT).

B'01xx xxxx'
Undefined.

B'00xx xxxx'
Only signature generation (SIG-ONLY).

All other values are undefined.

Translation control bit:

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK).

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE).

All other bits are reserved and must be zero.

When associated data section version is X'04': Reserved, binary zero.

051 001 Format restriction byte for digital-signature hash formatting method.

Value:

B'0000 0000'
No format restriction.

B'0000 0001'
ISO-9796 only.

B'0000 0010'
PKCS-1.0 only.

B'0000 0011'
PKCS-1.1 only.

B'0000 0100'
PKCS-PSS only.

B'0000 0101'
X9.31 only.

B'0000 0110'
ZERO-PAD only.

All other values are reserved and undefined.

052 002 Length of modulus: nnn bytes

054 002 Length of private exponent: ddd bytes

End of Associated Data

056 048 16 byte confounder + 32-byte Object Protection Key.

OPK used as an AES key.

encrypted with an AES KEK.

318 z/OS: z/OS ICSF System Programmer's Guide

Table 84. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') external form
(continued)

Offset
(bytes)

Length (bytes) Description

104 016 Key verification pattern

• For an encrypted private key, KEK verification pattern (KVP)
• For a clear private key, binary zeros
• For a skeleton, binary zeros

120 002 Reserved, binary zeros.

122 nnn Modulus

122+nnn ppp Payload starts here and includes:

When this section is unencrypted:

• Clear private exponent d.
• Length ppp bytes : ddd + 0

When this section is encrypted:

• Private exponent d within the AESKW-wrapped payload.
• Length ppp bytes : ddd + AESKW format overhead

RSA private key, 4096-bit chinese remainder Theorem format with AES encrypted
OPK section (X'31') external form
This RSA private key token is supported on Crypto Express3 and later coprocessors. Associated data
version 5 is supported on Crypto Express6 and later coprocessors with the July 2019 or later licensed
internal code (LIC).

Table 85. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31') external
form

Offset
(bytes)

Length (bytes) Description

000 001 Section identifier:

X'31'
RSA private key, CRT format with AES encrypted OPK

001 001 Section version number (X'00').

002 002 Section length: 134 + nnn + xxx

004 002 Length of “Associated Data” section

006 002 Length of payload data: xxx

008 002 Reserved, binary zero.

Start of Associated Data

010 001 Associated Data Version:

X'03'
Version 3

X'05'
Version 5

Appendix A. Diagnosis reference information 319

Table 85. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31') external
form (continued)

Offset
(bytes)

Length (bytes) Description

011 001 Key format and security flag:

X'40'
Unencrypted RSA private-key subsection identifier

X'42'
Encrypted RSA private-key subsection identifier

012 001 Key source flag:

Reserved, binary zero.

013 001 When associated data section version is X'03': Reserved, binary zero.

When associated data section version is X'05': Compliance and export control byte.

Bit
Meaning

B'1xxx xxxx'
Compliant-tagged key.

B'0xxx xxxx'
Non-compliant-tagged key.

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK).

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE).

All other bits are reserved and must be zero.

014 001 Hash type:

X'00'
Clear key

X'02'
SHA-256

015 032 When associated data section version is X'03': SHA-256 hash of all optional sections that
follow the public key section, if any. Otherwise, 32 bytes of binary zero.

When associated data section version is X'05':

Hash value of:

1. The public key section (section identifier X'04') and
2. All optional sections that follow the public key section, if any.

If there are no optional sections, the hash covers only the public keys section.

047 001 Reserved, binary zero.

320 z/OS: z/OS ICSF System Programmer's Guide

Table 85. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31') external
form (continued)

Offset
(bytes)

Length (bytes) Description

048 002 When associated data section version is X'03': Reserved, binary zero.

When associated data section version is X'05':

Usage bytes:

• Offset 48:

Bit
Meaning

B'1xxx xxxx'
Digital Signature usage is allowed (U-DIGSIG). Services: CSNDDSG, CSNDDSV,
CSNDT34B, CSNDT34D.

B'x1xx xxxx'
Non-Repudiation usage is allowed (U-NONRPD). Services: CSNDDSG, CSNDDSV.

B'xx1x xxxx'
Key Encipherment usage is allowed (U-KEYENC). Services: CSNDSYG, CSNDSYX,
CSNDSYI, CSNDSYI2, CSNDT34R, CSNDPKE, CSNDPKD.

B'xxx1 xxxx'
Data Encipherment usage is allowed (U-DATENC). Services: CSNDPKE, CSNDPKD.

B'xxxx 1xxx'
Key agreement usage is allowed (U-KEYAGR).

B'xxxx x1xx'
keyCertSign usage is allowed (U-KCRTSN). Services: CSNDDSG, CSNDDSV.

B'xxxx xx1x'
Certificate Revocation List Sign usage is allowed (U-CRLSN). Services: CSNDDSG,
CSNDDSV.

B'xxxx xxx1'
Only encipher operations are allowed during key agreement (U-ENCONL).

• Offset 49:

Bit
Meaning

B'1xxx xxxx'
Only decipher operations are allowed during key agreement (U-DECONL).

Appendix A. Diagnosis reference information 321

Table 85. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31') external
form (continued)

Offset
(bytes)

Length (bytes) Description

050 001 When associated data section version is X'03': Key-usage and translation control flag.

Key-usage flag:

B'11xx xxxx'
Only key unwrapping (KM-ONLY).

B'10xx xxxx'
Both signature generation and key unwrapping (KEY-MGMT).

B'01xx xxxx'
Undefined.

B'00xx xxxx'
Only signature generation (SIG-ONLY).

All other values are undefined.

Translation control bit:

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK).

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE).

All other values are reserved and undefined.

When associated data section version is X'05': Reserved, binary zero.

051 001 Format restriction byte for digital-signature hash formatting method.

Value:

B'0000 0000'
No format restriction.

B'0000 0001'
ISO-9796 only.

B'0000 0010'
PKCS-1.0 only.

B'0000 0011'
PKCS-1.1 only.

B'0000 0100'
PKCS-PSS only.

B'0000 0101'
X9.31 only.

B'0000 0110'
ZERO-PAD only.

All other values are reserved and undefined.

052 002 Length of the prime number, p, in bytes: ppp.

054 002 Length of the prime number, q, in bytes: qqq

056 002 Length of dp : rrr.

058 002 Length of dq : sss.

060 002 Length of U: uuu.

062 002 Length of modulus, nnn.

064 002 Reserved, binary zero.

066 002 Reserved, binary zero.

322 z/OS: z/OS ICSF System Programmer's Guide

Table 85. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31') external
form (continued)

Offset
(bytes)

Length (bytes) Description

End of Associated Data

068 048 16 byte confounder + 32-byte Object Protection Key.

OPK used as an AES key.

External tokens:

Encrypted with an AES KEK.

Internal tokens:

Encrypted with the ECC master key.

116 016 Key verification pattern

• For an encrypted private key, KEK verification pattern (KVP).
• For a clear private key, binary zeros.
• For a skeleton, binary zero.

132 002 Reserved, binary zero.

134 nnn Modulus, n, n=pq, where p and q are prime.

134+nnn xxx Payload starts here and includes:

When this section is unencrypted:

• Clear prime number p
• Clear prime number q
• Clear dp
• Clear dq
• Clear U
• Length xxx bytes: ppp + qqq + rrr + sss +uuu + 0

When this section is encrypted:

• prime number p
• prime number q
• dp
• dq
• U
• within the AESKW-wrapped payload.

Length xxx bytes : ppp + qqq + rrr + sss +uuu + AESKW format overhead

RSA private internal key token
An RSA private internal key token contains the following sections:

• A required PKA token header, starting with the token identifier X'1F'
• Basic record format of an RSA private internal key token. All length fields are in binary. All binary fields

(exponents, lengths, and so on) are stored with the high-order byte first. All binary fields (exponents,
modulus, and so on) in the private sections of tokens are right-justified and padded with zeros to the
left.

Appendix A. Diagnosis reference information 323

Table 86. RSA Private Internal Key Token Basic Record Format

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1F' indicates an internal token. The private key is
enciphered with a PKA master key.

001 001 Version, X'00'.

002 002 Length of the key token structure excluding the internal information
section.

004 004 Ignored; should be zero.

RSA Private Key Section and Secured Subsection (required)

• For 1024-bit X'02' Modulus-Exponent form, refer to “RSA private key token, 1024-bit X’02’ modulus-
exponent internal form” on page 325.

• For 1024-bit X'06' Modulus-Exponent form, refer to “RSA private key token, 1024-bit X’06’ modulus-
exponent internal form” on page 326.

• For 4096-bit X'08' Chinese Remainder Theorem form, refer to “RSA private key token, 4096-bit chinese
remainder Theorem internal form” on page 336.

• For 4096-bit Modulus-Exponent form with AES OPK, refer to “RSA private key, 4096-bit modulus-exponent
format with AES encrypted OPK section (X'30') internal form” on page 328.

• For 4096-bit Chinese Remainder Theorem form with AES OPK, refer to Table 90 on page 332.

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, "xxx".

008 002 Public key modulus length in bits.

010 002 RSA public key modulus field length in bytes, which is zero for a private
token.

012 xxx Public key exponent (this is generally a 1, 3, or 64 to 512 byte
quantity), e. e must be odd and 1<e<n. (Frequently, the value of e is
216+1 (=65,537).

Private Key Name (optional)

000 001 X'10', section identifier, private key name.

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-justified, padded with space
characters (X'20'). An access control system can use the private key
name to verify that the calling application is entitled to use the key.

Internal Information Section (required)

000 004 Eye catcher 'PKTN'.

324 z/OS: z/OS ICSF System Programmer's Guide

Table 86. RSA Private Internal Key Token Basic Record Format (continued)

Offset (Dec) Number of Bytes Description

004 004 PKA token type.
Bit

Meaning When Set On
0

RSA key.
1

DSS key.
2

Private key.
3

Public key.
4

Private key name section exists.
5

Private key unenciphered.
6

Blinding information present.
7

Retained private key.

008 004 Address of token header.

012 002 Total length of total structure including this information section.

014 002 Count of number of sections.

016 016 PKA master key hash pattern.

032 001 Domain of retained key.

033 008 Serial number of processor holding retained key.

041 007 Reserved.

RSA private key token, 1024-bit X’02’ modulus-exponent internal form
Table 87. RSA Private Internal Key Token, 1024-bit X’02’ ME Form

Offset (Dec) Number of Bytes Description

000 001 X'02', section identifier, RSA private key.

001 001 X'00', version.

002 002 Length of the RSA private key section X'016C' (364 decimal).

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to
the section end. This hash value is checked after an enciphered private
key is deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'02'

RSA private key.

Appendix A. Diagnosis reference information 325

Table 87. RSA Private Internal Key Token, 1024-bit X’02’ ME Form (continued)

Offset (Dec) Number of Bytes Description

029 001 Format of external key from which this token was derived:
X'21'

External private key was specified in the clear.
X'22'

External private key was encrypted.

030 020 SHA-1 hash of the key token structure contents that follow the public
key section. If no sections follow, this field is set to binary zeros.

050 001 Key use flag bits.
Bit

Meaning When Set On
0

Key management usage permitted.
1

Signature usage not permitted.

All other bits reserved, set to binary zero.

051 009 Reserved; set to binary zero.

060 048 Object Protection Key (OPK) encrypted under the RSA-MK.

108 128 Secret key exponent d, encrypted under the OPK. d=e-1 mod((p-1)
(q-1))

236 128 Modulus, n. n=pq where p and q are prime and 1<n<21024.

RSA private key token, 1024-bit X’06’ modulus-exponent internal form
Table 88. RSA Private Internal Key Token, 1024-bit X’06’ ME Form

Offset (Dec) Number of Bytes Description

000 001 X'06', section identifier, RSA private key modulus-exponent format
(RSA-PRIV).

001 001 X'00', version.

002 002 Length of the RSA private key section X'0198' (408 decimal) + rrr + iii +
xxx.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to
and including the modulus at offset 236.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'02'

RSA private key.

326 z/OS: z/OS ICSF System Programmer's Guide

Table 88. RSA Private Internal Key Token, 1024-bit X’06’ ME Form (continued)

Offset (Dec) Number of Bytes Description

029 001 Format of external key from which this token was derived:
X'21'

External private key was specified in the clear.
X'22'

External private key was encrypted.
X'23'

Private key was generated using regeneration data.
X'24'

Private key was randomly generated.

030 020 SHA-1 hash of the optional key-name section and any following
optional sections. If there are no optional sections, this field is set to
binary zeros.

050 004 Key use flag bits.
Bit

Meaning When Set On
0

Key management usage permitted.
1

Signature usage not permitted.

All other bits reserved, set to binary zeros.

054 006 Reserved; set to binary zero.

060 048 Object Protection Key (OPK) encrypted under the RSA-MK using the
ede3 algorithm.

108 128 Private key exponent d, encrypted under the OPK using the ede5
algorithm. d=e-1mod((p-1)(q-1)), and 1<d<n where e is the public
exponent.

236 128 Modulus, n. n=pq where p and q are prime and 2512<n<21024.

364 016 RSA master key verification pattern

380 020 SHA-1 hash value of the blinding information subsection cleartext,
offset 400 to the end of the section.

400 002 Length of the random number r, in bytes: rrr.

402 002 Length of the random number r–1, in bytes: iii.

404 002 Length of the padding field, in bytes: xxx.

406 002 Reserved; set to binary zeros.

408 Start of the encrypted blinding subsection

408 rrr Random number r (used in blinding).

408 + rrr iii Random number r–1 (used in blinding).

408 + rrr + iii xxx X'00' padding of length xxx bytes such that the length from the start of
the encrypted blinding subsection to the end of the padding field is a
multiple of eight bytes.

Appendix A. Diagnosis reference information 327

Table 88. RSA Private Internal Key Token, 1024-bit X’06’ ME Form (continued)

Offset (Dec) Number of Bytes Description

End of the encrypted blinding subsection; all of the fields starting with the random number r
and ending with the variable length pad field are encrypted under the OPK using TDES (CBC
outer chaining) algorithm.

RSA private key, 4096-bit modulus-exponent format with AES encrypted OPK
section (X'30') internal form
This RSA private key token is supported on Crypto Express3 and later coprocessors. Associated data
version 4 is supported on Crypto Express6 and later coprocessors with the July 2019 or later licensed
internal code (LIC).

Table 89. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') internal form

Offset
(bytes)

Length (bytes) Description

000 001 Section identifier:

X'30'
RSA private key, ME format with AES encrypted OPK.

001 001 Section version number (X'00').

002 002 Section length: 122 + nnn + ppp

004 002 Length of “Associated Data” section

006 002 Length of payload data: ppp

008 002 Reserved, binary zero.

Start of Associated Data

010 001 Associated Data Version:

X'02'
Version 2

X'04'
Version 4

011 001 Key format and security flag:

X'02'
Encrypted ME RSA private-key subsection identifier

012 001 Key source flag:

Internal tokens:

X'21'
Imported from cleartext

X'22'
Imported from ciphertext

X'23'
Generated using regeneration data

X'24'
Randomly generated

328 z/OS: z/OS ICSF System Programmer's Guide

Table 89. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') internal form
(continued)

Offset
(bytes)

Length (bytes) Description

013 001 When associated data section version is X'02': Reserved, binary zero.

When associated data section version is X'04': Compliance and export control byte.

Bit
Meaning

B'1xxx xxxx'
Compliant-tagged key.

B'0xxx xxxx'
Non-compliant-tagged key.

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK).

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE).

All other bits are reserved and must be zero.

014 001 Hash type:

X'00'
Clear key

X'02'
SHA-256

015 032 When associated data section version is X'02': SHA-256 hash of all optional sections that
follow the public key section, if any. Otherwise, 32 bytes of binary zero.

When associated data section version is X'04': Hash value of:

1. The public key section (section identifier X'04') and
2. All optional sections that follow the public key section, if any.

If there are no optional sections, the hash covers only the public keys section.

047 001 Reserved, binary zero.

Appendix A. Diagnosis reference information 329

Table 89. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') internal form
(continued)

Offset
(bytes)

Length (bytes) Description

048 002 When associated data section version is X'02': Reserved, binary zero.

When associated data section version is X'04':

Usage bytes:

• Offset 48:

Bit
Meaning

B'1xxx xxxx'
Digital Signature usage is allowed (U-DIGSIG). Services: CSNDDSG, CSNDDSV,
CSNDT34B, CSNDT34D.

B'x1xx xxxx'
Non-Repudiation usage is allowed (U-NONRPD). Services: CSNDDSG, CSNDDSV.

B'xx1x xxxx'
Key Encipherment usage is allowed (U-KEYENC). Services: CSNDSYG, CSNDSYX,
CSNDSYI, CSNDSYI2, CSNDT34R, CSNDPKE, CSNDPKD.

B'xxx1 xxxx'
Data Encipherment usage is allowed (U-DATENC). Services: CSNDPKE, CSNDPKD.

B'xxxx 1xxx'
Key agreement usage is allowed (U-KEYAGR).

B'xxxx x1xx'
keyCertSign usage is allowed (U-KCRTSN). Services: CSNDDSG, CSNDDSV.

B'xxxx xx1x'
Certificate Revocation List Sign usage is allowed (U-CRLSN). Services: CSNDDSG,
CSNDDSV.

B'xxxx xxx1'
Only encipher operations are allowed during key agreement (U-ENCONL).

• Offset 49:

Bit
Meaning

B'1xxx xxxx'
Only decipher operations are allowed during key agreement (U-DECONL).

330 z/OS: z/OS ICSF System Programmer's Guide

Table 89. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') internal form
(continued)

Offset
(bytes)

Length (bytes) Description

050 001 When associated data section version is X'02': Key-usage and translation control flag:

Key-usage:

B'11xx xxxx'
Only key unwrapping (KM-ONLY).

B'10xx xxxx'
Both signature generation and key unwrapping (KEY-MGMT).

B'01xx xxxx'
Undefined.

B'00xx xxxx'
Only signature generation (SIG-ONLY).

All other values are undefined.

Translation control bit:

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK).

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE).

All other bits are reserved and must be zero.

When associated data section version is X'04': Reserved, binary zero.

051 001 Format restriction byte for digital-signature hash formatting method.

Value:

B'0000 0000'
No format restriction.

B'0000 0001'
ISO-9796 only.

B'0000 0010'
PKCS-1.0 only.

B'0000 0011'
PKCS-1.1 only.

B'0000 0100'
PKCS-PSS only.

B'0000 0101'
X9.31 only.

B'0000 0110'
ZERO-PAD only.

All other values are reserved and undefined.

052 002 Length of modulus: nnn bytes

054 002 Length of private exponent: ddd bytes

End of Associated Data

056 048 16 byte confounder + 32-byte Object Protection Key.

OPK used as an AES key.

encrypted with the ECC master key.

Appendix A. Diagnosis reference information 331

Table 89. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') internal form
(continued)

Offset
(bytes)

Length (bytes) Description

104 016 Key verification pattern

• For an encrypted private key,

– When a non-compliant-tagged token (bit 0 at offset 13 is not set), the ECC master-
key verification pattern (MKVP).

– When a compliant-tagged token (bit 0 at offset 13 is set), 5 bytes of the ECC MKVP
followed by 3 bytes of internal compliance information.

• For a skeleton, binary zero.

120 002 Reserved, binary zeros.

122 nnn Modulus

122+nnn ppp Payload starts here and includes:

When this section is unencrypted:

• Clear private exponent d.
• Length ppp bytes : ddd + 0

When this section is encrypted:

• Private exponent d within the AESKW-wrapped payload.
• Length ppp bytes : ddd + AESKW format overhead

RSA private key, 4096-bit chinese remainder Theorem format with AES encrypted
OPK section (X'31') internal form
This RSA private key token is supported on Crypto Express3 and later coprocessors. Associated data
version 5 is supported on Crypto Express6 and later coprocessors with the July 2019 or later licensed
internal code (LIC).

Table 90. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31') internal form

Offset
(bytes)

Length (bytes) Description

000 001 Section identifier:

X'31'
RSA private key, CRT format with AES encrypted OPK

001 001 Section version number (X'00').

002 002 Section length: 134 + nnn + xxx

004 002 Length of “Associated Data” section

006 002 Length of payload data: xxx

008 002 Reserved, binary zero.

Start of Associated Data

010 001 Associated Data Version:

X'03'
Version 3

X'05'
Version 5

332 z/OS: z/OS ICSF System Programmer's Guide

Table 90. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31') internal form
(continued)

Offset
(bytes)

Length (bytes) Description

011 001 Key format and security flag:

X'08'
Unencrypted RSA private-key subsection identifier

012 001 Key source flag:

X'21'
Imported from cleartext

X'22'
Imported from ciphertext

X'23'
Generated using regeneration data

X'24'
Randomly generated

013 001 When associated data section version is X'03': Reserved, binary zero.

When associated data section version is X'05': Compliance and export control byte.

Bit
Meaning

B'1xxx xxxx'
Compliant-tagged key.

B'0xxx xxxx'
Non-compliant-tagged key.

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK).

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE).

All other bits are reserved and must be zero.

014 001 Hash type:

X'00'
Clear key

X'01'
SHA-256

015 032 When associated data section version is X'03': SHA-256 hash of all optional sections that
follow the public key section, if any. Otherwise, 32 bytes of binary zero.

When associated data section version is X'05':

Hash value of:

1. The public key section (section identifier X'04') and
2. All optional sections that follow the public key section, if any.

If there are no optional sections, the hash covers only the public keys section.

047 001 Reserved, binary zero.

Appendix A. Diagnosis reference information 333

Table 90. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31') internal form
(continued)

Offset
(bytes)

Length (bytes) Description

048 002 When associated data section version is X'03': Reserved, binary zero.

When associated data section version is X'05':

Usage bytes:

• Offset 48:

Bit
Meaning

B'1xxx xxxx'
Digital Signature usage is allowed (U-DIGSIG). Services: CSNDDSG, CSNDDSV,
CSNDT34B, CSNDT34D.

B'x1xx xxxx'
Non-Repudiation usage is allowed (U-NONRPD). Services: CSNDDSG, CSNDDSV.

B'xx1x xxxx'
Key Encipherment usage is allowed (U-KEYENC). Services: CSNDSYG, CSNDSYX,
CSNDSYI, CSNDSYI2, CSNDT34R, CSNDPKE, CSNDPKD.

B'xxx1 xxxx'
Data Encipherment usage is allowed (U-DATENC). Services: CSNDPKE, CSNDPKD.

B'xxxx 1xxx'
Key agreement usage is allowed (U-KEYAGR).

B'xxxx x1xx'
keyCertSign usage is allowed (U-KCRTSN). Services: CSNDDSG, CSNDDSV.

B'xxxx xx1x'
Certificate Revocation List Sign usage is allowed (U-CRLSN). Services: CSNDDSG,
CSNDDSV.

B'xxxx xxx1'
Only encipher operations are allowed during key agreement (U-ENCONL).

• Offset 49:

Bit
Meaning

B'1xxx xxxx'
Only decipher operations are allowed during key agreement (U-DECONL).

334 z/OS: z/OS ICSF System Programmer's Guide

Table 90. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31') internal form
(continued)

Offset
(bytes)

Length (bytes) Description

050 001 When associated data section version is X'03': Key-usage and translation control flag.

Key-usage flag:

B'11xx xxxx'
Only key unwrapping (KM-ONLY).

B'10xx xxxx'
Both signature generation and key unwrapping (KEY-MGMT).

B'01xx xxxx'
Undefined.

B'00xx xxxx'
Only signature generation (SIG-ONLY).

All other values are undefined.

Translation control bit:

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK).

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE).

All other values are reserved and undefined.

When associated data section version is X'05': Reserved, binary zero.

051 001 Format restriction byte for digital-signature hash formatting method.

Value:

B'0000 0000'
No format restriction.

B'0000 0001'
ISO-9796 only.

B'0000 0010'
PKCS-1.0 only.

B'0000 0011'
PKCS-1.1 only.

B'0000 0100'
PKCS-PSS only.

B'0000 0101'
X9.31 only.

B'0000 0110'
ZERO-PAD only.

All other values are reserved and undefined.

052 002 Length of the prime number, p, in bytes: ppp.

054 002 Length of the prime number, q, in bytes: qqq

056 002 Length of dp : rrr.

058 002 Length of dq : sss.

060 002 Length of U: uuu.

062 002 Length of modulus, nnn.

064 002 Reserved, binary zero.

066 002 Reserved, binary zero.

Appendix A. Diagnosis reference information 335

Table 90. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31') internal form
(continued)

Offset
(bytes)

Length (bytes) Description

End of Associated Data

068 048 16 byte confounder + 32-byte Object Protection Key.

OPK used as an AES key.

Encrypted with the ECC-MK.

116 016 Key verification pattern

• For an encrypted private key,

– When a non-compliant-tagged token (bit 0 at offset 13 is not set), the ECC master-
key verification pattern (MKVP).

– When a compliant-tagged token (bit 0 at offset 13 is set), 5 bytes of the ECC MKVP
followed by 3 bytes of internal compliance information.

• For a skeleton, binary zero.

132 002 Reserved, binary zero.

134 nnn Modulus, n, n=pq, where p and q are prime.

134+nnn xxx Payload starts here and includes:

When this section is unencrypted:

• Clear prime number p
• Clear prime number q
• Clear dp
• Clear dq
• Clear U
• Length xxx bytes: ppp + qqq + rrr + sss +uuu + 0

When this section is encrypted:

• prime number p
• prime number q
• dp
• dq
• U
• within the AESKW-wrapped payload.

Length xxx bytes : ppp + qqq + rrr + sss +uuu + AESKW format overhead

RSA private key token, 4096-bit chinese remainder Theorem internal form
This RSA private key token (up to 2048-bit modulus) is supported on all cryptographic coprocessors. The
4096-bit modulus private key token is supported on the z9 EC, z9 BC, z10 EC, z10 BC, or IBM zEnterprise
196 with the Nov. 2007 or later version of the licensed internal code installed on the CCA Crypto Express
coprocessor.

Table 91. RSA Private Internal Key Token, 4096-bit Chinese Remainder Theorem Internal Format

Offset (Dec) Number of Bytes Description

000 001 X'08', section identifier, RSA private key, CRT format (RSA-CRT)

001 001 X'00', version.

336 z/OS: z/OS ICSF System Programmer's Guide

Table 91. RSA Private Internal Key Token, 4096-bit Chinese Remainder Theorem Internal Format (continued)

Offset (Dec) Number of Bytes Description

002 002 Length of the RSA private-key section, 132 + ppp + qqq + rrr + sss +
uuu + ttt + iii + xxx + nnn.

004 020 SHA-1 hash value of the private-key subsection cleartext, offset 28 to
the end of the modulus.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'08'

Encrypted RSA private-key subsection identifier, Chinese
Remainder form.

029 001 Key derivation method:
X'21'

External private key was specified in the clear.
X'22'

External private key was encrypted.
X'23'

Private key was generated using regeneration data.
X'24'

Private key was randomly generated.

030 020 SHA-1 hash of the optional key-name section and any following
sections. If there are no optional sections, then 20 bytes of X'00'.

050 004 Key use flag bits:
Bit

Meaning When Set On
0

Key management usage permitted.
1

Signature usage not permitted.

All other bits reserved, set to binary zero.

054 002 Length of prime number, p, in bytes: ppp.

056 002 Length of prime number, q, in bytes: qqq.

058 002 Length of dp, in bytes: rrr.

060 002 Length of dq, in bytes: sss.

062 002 Length of U, in bytes: uuu.

064 002 Length of modulus, n, in bytes: nnn.

066 002 Length of the random number r, in bytes: ttt.

068 002 Length of the random number r–1, in bytes: iii.

070 002 Length of padding field, in bytes: xxx.

072 004 Reserved, set to binary zero.

076 016 RSA master key verification pattern.

Appendix A. Diagnosis reference information 337

Table 91. RSA Private Internal Key Token, 4096-bit Chinese Remainder Theorem Internal Format (continued)

Offset (Dec) Number of Bytes Description

092 032 Object Protection Key (OPK) encrypted under the Asymmetric-Keys
Master Key using the TDES (CBC outer chaining) algorithm.

124 Start of the encrypted secure subsection, encrypted under the OPK using TDES (CBC outer
chaining).

124 008 Random number, confounder.

132 ppp Prime number, p.

132 + ppp qqq Prime number, q

132 + ppp +
qqq

rrr dp = d mod(p - 1)

132 + ppp +
qqq + rrr

sss dq = d mod(q - 1)

132 + ppp +
qqq + rrr + sss

uuu U = q–1mod(p).

132 + ppp +
qqq + rrr + sss
+ uuu

ttt Random number r (used in blinding).

132 + ppp +
qqq + rrr + sss
+ uuu + ttt

iii Random number r–1 (used in blinding).

132 + ppp +
qqq + rrr + sss
+ uuu + ttt + iii

xxx X'00' padding of length xxx bytes such that the length from the start of
the confounder at offset 124 to the end of the padding field is a
multiple of eight bytes.

End of the encrypted secure subsection; all of the fields starting with the confounder field and
ending with the variable length pad field are encrypted under the OPK using TDES (CBC outer
chaining) for key confidentiality.

132 + ppp +
qqq + rrr + sss
+ uuu + ttt + iii
+ xxx

nnn Modulus, n. n = pq where p and q are prime and 1<n<24096.

ECC key token format
The following table presents the format of the ECC Key Token.

Table 92. ECC Key Token Format

Offset (Dec) Number of bytes Description

Token header

000 001 Token identifier.
X'00'

Null token
X'1E'

External token
X'1F'

Internal token; the private key is protected by the master key

338 z/OS: z/OS ICSF System Programmer's Guide

Table 92. ECC Key Token Format (continued)

Offset (Dec) Number of bytes Description

001 001 Version, X'00'.

002 002 Length of the key token structure excluding the internal information
section.

004 004 Ignored; should be zero.

ECC Token Private section

000 001 X'20', section identifier, ECC private key

001 001 X'00', version.

002 002 Section length.

004 001 Wrapping Method: This value indicates the wrapping method used to
protect the data in the encrypted section. It is not the method used to
protect the Object Protection Key (OPK).
X'00'

Clear – section is unencrypted.
X'01'

AESKW
X'02'

CBC Wrap - Other

005 001 Hash used for Wrapping
X'01'

SHA224
X'02'

SHA256
X'04'

Reserved.
X'08 '

Reserved

006 002 Reserved Binary Zero

008 001 Key Usage:
X'C0'

Key Agreement
X'80'

Both signature generation and key agreement
X'00'

Signature generation only
X'02'

Translate allowed
The two high-order bits indicate permitted key usage in the decryption
of symmetric keys and in the generation of digital signatures. The bit in
the second nibble indicates if the key is translatable. A key is
translatable if it can be re-encrypted from one key encrypting key to
another.

Appendix A. Diagnosis reference information 339

Table 92. ECC Key Token Format (continued)

Offset (Dec) Number of bytes Description

009 001 Curve type:
X'00'

Prime curve
X'01'

Brainpool curve

010 001 Key Format and Security Flag.

External Token:
X'40'

Unencrypted ECC private key identifier
X'42'

Encrypted ECC private key identifier

Internal Token:
X'08'

Encrypted ECC private key identifier

011 001 Reserved Binary Zero

012 002 Length of p in bits
X'00C0'

Prime P-192
X'00E0'

Prime P-224
X'0100'

Prime P-256
X'0180'

Prime P-384
X'0209'

Prime P-521
X'00A0'

Brainpool p-160
X'00C0'

Brainpool P-192
X'00E0'

Brainpool P-224
X'0100'

Brainpool P-256
X'0140'

Brainpool P-320
X'0180'

Brainpool P-384
X'0200'

Brainpool P-512)

014 002 IBM Associated Data length. The length of this field must be greater
than or equal to 16

340 z/OS: z/OS ICSF System Programmer's Guide

Table 92. ECC Key Token Format (continued)

Offset (Dec) Number of bytes Description

016 008 External Token:

• Unencrypted – Reserved Binary 0x’00’
• Encrypted – KVP of the AESKEK

Internal Token: MKVP of the ECC-MK

024 048 External Token: reserved binary zeros.

Internal Token: Object Protection Key (OPK), ICV (Integrity Check
value), 8 byte confounder and a 256-bit AES key used with the AESKW
algorithm to encrypt the ECC private key.

The OPK is encrypted by the AES master key using AESKW as well.
Example format for OPK data passed to AESKW:

• 8 bytes = A6A6A6A6A6A60000
• 40 bytes = Confounder(8)/Key(32)

072 002 Associated data length, aa

074 002 Length of formatted section in bytes, bb

076 aa Associated data

See “Associated data format for ECC token” on page 342.

076 + aa Start of formatted
section

If this section is in the clear it contains private key d.

If it is encrypted it contains the AESKW wrapped payload.

76 + aa bb Formatted section which includes Private key d

See “AESKW wrapped payload format for ECC private key token” on
page 343.

76 + aa + bb End of formatted
section

ECC Token Public Section

000 001 X'21', section identifier

001 001 X'00', version.

002 002 Section length

004 004 Reserved field, binary zero

008 001 Curve type
X'00'

Prime curve
X'01'

Brainpool curve

009 001 Reserved field, binary zero

Appendix A. Diagnosis reference information 341

Table 92. ECC Key Token Format (continued)

Offset (Dec) Number of bytes Description

010 002 Length of p in bits:
X'00C0'

Prime P-192
X'00E0'

Prime P-224
X'0100'

Prime P-256
X'0180'

Prime P-384
X'0209'

Prime P-521
X'00A0'

Brainpool P-160
X'00C0'

Brainpool P-192
X'00E0'

Brainpool P-224
X'0100'

Brainpool P-256
X'0140'

Brainpool P-320
X'0180'

Brainpool P-384
X'0200'

Brainpool P-512

012 002 This field is the length of the public key q value in bytes, the maximum
value could be up to 133 bytes, cc. The value includes the key material
length and one byte to indicate if the key material is compressed or
uncompressed.

014 cc Public Key , q field

Associated data format for ECC token
Table 93 on page 342 defines the associated data as it is stored in the ECC token in the clear. Associated
data is data whose integrity but not confidentiality is protected by a key wrap mechanism.

Table 93. Associated Data Format for ECC Private Key Token

Offset (Dec) Number of Bytes Description

000 001 Associated Data Version. 0 for ECC

001 001 Length of Key Label, kl

002 002 IBM Associated Data length, 16 + kl + xxx

004 002 IBM Extended Associated Data length, xxx

006 001 User Definable Associated Data length, yyy. User definable lengths
are from 0 bytes to 100 bytes.

342 z/OS: z/OS ICSF System Programmer's Guide

Table 93. Associated Data Format for ECC Private Key Token (continued)

Offset (Dec) Number of Bytes Description

007 001 Curve Type

008 002 Length of p in bits

010 001 Usage flag

011 001 Format and Security flag

012 004 reserved

016 kl Key Label (optional)

016 + kl xxx IBM Extended Associated Data

016 + kl +
xxx

yyy User-definable Associated Data

AESKW wrapped payload format for ECC private key token
This table defines the contents of the AESKW payload: data will be copied into this format, then encrypted
with the OPK according to the AESKW specification, and the result will be stored in the encrypted data
section.

Table 94. AESKW Wrapped Payload Format for ECC Private Key Token

Offset (Dec) Number of Bytes Description

000 006 ICV (‘A6’….)

006 001 Length of padding in bits

007 001 Length of the hash of the associated data in bytes, ii

008 004 Hash options

012 ii Hash of Associated Data

12+ii mm Key data

12+ii+mm 0-7 Padding to a multiple of 8 bytes

Trusted blocks
A trusted block is an extension of CCA PKA key tokens using new section identifiers. They are an integral
part of a remote key-loading process.

Trusted blocks contain various items, some of which are optional, and some of which can be present in
different forms. Tokens are composed of concatenated sections that, unlike CCA PKA key tokens, occur in
no prescribed order.

As with other CCA key-tokens, both internal and external forms are defined:

• An external trusted block contains a randomly generated confounder and a triple-length MAC key
enciphered under a DES IMP-PKA transport key. The MAC key is used to calculate an ISO 16609 CBC
mode TDES MAC of the trusted block contents. An external trusted block is created by the Trusted Block
Create callable service. This service can:

1. Create an inactive external trusted block.
2. Change an external trusted block from inactive to active.

• An internal trusted block contains a confounder and triple-length MAC key enciphered under a variant of
the PKA master key. The MAC key is used to calculate a TDES MAC of the trusted block contents. A PKA
master key verification pattern is also included to enable determination that the proper master key is

Appendix A. Diagnosis reference information 343

available to process the key. The Remote Key Export service only operates on trusted blocks that are
internal. An internal trusted block must be imported from an external trusted block that is active using
the PKA Key Import service.

Note: Trusted blocks do not contain a private key section.

Trusted block sections
A trusted block is a concatenation of a header followed by an unordered set of sections. The data
structures of these sections are summarized in the following table:

Table 95. Trusted block sections

Section Reference Usage

Header Table 96 on page 345 Trusted block token header

X'11' Table 97 on page 346 Trusted block public key

X'12' Table 98 on page 347 Trusted block rule

X'13' Table 105 on page 354 Trusted block name (key label)

X'14' Table 106 on page 354 Trusted block information

X'15' Table 110 on page 356 Trusted block application-defined data

Every trusted block starts with a token header. The first byte of the token header determines the key form:

• An external header (first byte X'1E'), created by the Trusted Block Create verb
• An internal header (first byte X'1F'), imported from an active external trusted block by the PKA Key

Import verb

Following the token header of a trusted block is an unordered set of sections. A trusted block is formed by
concatenating these sections to a trusted block header:

• An optional public-key section (trusted block section identifier X'11')

The trusted block trusted RSA public-key section includes the key itself in addition to a key-usage flag.
No multiple sections are allowed.

• An optional rule section (trusted block section identifier X'12')

A trusted block may have zero or more rule sections.

1. A trusted block with no rule sections can be used by the PKA Key Token Change and PKA Key Import
callable services. A trusted block with no rule sections can also be used by the Digital Signature
Verify verb, provided there is an RSA public-key section that has its key-usage flag bits set to allow
digital signature operations.

2. At least one rule section is required when the Remote Key Export verb is used to:

– Generate an RKX key-token
– Export an RKX key-token
– Export a CCA DES key-token
– Encrypt the clear generated or exported key using the provided vendor certificate

3. If a trusted block has multiple rule sections, each rule section must have a unique 8-character Rule
ID.

• An optional name (key label) section (trusted block section identifier X'13')

The trusted block name section provides a 64-byte variable to identify the trusted block, just as key
labels are used to identify other CCA keys. This name, or label, enables a host access-control system
such as RACF to use the name to verify that the application has authority to use the trusted block. No
multiple sections are allowed.

• A required information section (trusted block section identifier X'14')

344 z/OS: z/OS ICSF System Programmer's Guide

The trusted block information section contains control and security information related to the trusted
block. The information section is required while the others are optional. This section contains the
cryptographic information that guarantees its integrity and binds it to the local system. No multiple
sections are allowed.

• An optional application-defined data section (trusted block section identifier X'15')

The trusted block application-defined data section can be used to include application-defined data in
the trusted block. The purpose of the data in this section is defined by the application. CCA does not
examine or use this data in any way. No multiple sections are allowed.

Trusted block integrity
An enciphered confounder and triple-length MAC key contained within the required information section of
the trusted block is used to protect the integrity of the trusted block. The randomly generated MAC key is
used to calculate an ISO 16609 CBC mode TDES MAC of the trusted block contents. Together, the MAC
key and MAC value provide a way to verify that the trusted block originated from an authorized source,
and binds it to the local system.

An external trusted block has its MAC key enciphered under an IMP-PKA key-encrypting key. An internal
trusted block has its MAC key enciphered under a variant of the PKA master key, and the master key
verification pattern is stored in the information section.

Number representation in trusted blocks
• All length fields are in binary.
• All binary fields (exponents, lengths, and so forth) are stored with the high-order byte first; thus the

least significant bits are to the right and preceded with zero-bits to the width of a field.
• In variable-length binary fields that have an associated field-length value, leading bytes that would

otherwise contain X'00' can be dropped and the field can be shortened to contain only the significant
bits.

Format of trusted block sections
At the beginning of every trusted block is a trusted block header. The header contains the following
information:

• A token identifier, which specifies whether the token contains an external or internal key-token.
• A token version number to allow for future changes.
• A length in bytes of the trusted block, including the length of the header.

The trusted block header is defined in the following table:

Table 96. Trusted block header

Offset (bytes) Length (bytes) Description

000 001 Token identifier (a flag that indicates token type)

X'1E'
External trusted block token.

X'1F'
Internal trusted block token.

001 001 Token version number (X'00').

002 002 Length of the key-token structure in bytes.

004 004 Reserved, binary zero.

Note: See “Number representation in trusted blocks” on page 345.

Following the header, in no particular order, are trusted block sections. There are five different sections
that are defined, each identified by a one-byte section identifier (X'11' - X'15'). Two of the five sections

Appendix A. Diagnosis reference information 345

have subsections that are defined. A subsection is a tag-length-value (TLV) object, which is identified by a
two-byte subsection tag.

Only sections X'12' and X'14' have subsections that are defined; the other sections do not. A section and
its subsections, if any, are one contiguous unit of data. The subsections are concatenated to the related
section, but are otherwise in no particular order. Section X'12' has five subsections that are defined
(X'0001' - X'0005'), and section X'14' has two (X'0001' and X'0002'). Of all the subsections, only
subsection X'0001' of section X'14' is required. Section X'14' is also required.

The trusted block sections and subsections are described in detail in the following sections.

Trusted block section X'11'
Trusted block section X'11' contains the trusted RSA public key in addition to a key-usage flag indicating
whether the public key is usable in key-management operations, digital signature operations, or both.

Section X'11' is optional. No multiple sections are allowed. It has no subsections that are defined.

This section is defined in the following table:

Table 97. Trusted block trusted RSA public-key section (X'11')

Offset (bytes) Length (bytes) Description

000 001 Section identifier:

X'11'
Trusted block trusted RSA public key.

001 001 Section version number (X'00').

002 002 Section length (16+xxx+yyy).

004 002 Reserved, must be binary zero.

006 002 RSA public-key exponent field length in bytes, xxx.

008 002 RSA public-key modulus length in bits.

010 002 RSA public-key modulus field length in bytes, yyy.

012 xxx Public-key exponent, e (this field length is
typically 1, 3, or 64 - 512 bytes). e must be
odd and 1≤e<n. (e is frequently
valued to 3 or 216+1 (=65537),
otherwise e is of the same order of magnitude
as the modulus).

Note: Although the current product implementation does not generate such a public key, you
can import an RSA public key having an exponent valued to two (2). Such a public key (a Rabin
key) can correctly validate an ISO 9796-1 digital signature.

012+xxx yyy RSA public-key modulus, n. n=pq, where p and q
are prime and 2512≤
n<24096.
The field length is 64 - 512 bytes.

012
+xxx+yyy

004 Flags:

X'00000000'
Trusted block public key can be used in digital signature operations only.

X'80000000'
Trusted block public key can be used in both digital signature and key management
operations.

X'C0000000'
Trusted block public key can be used in key management operations only.

Note: See “Number representation in trusted blocks” on page 345.

346 z/OS: z/OS ICSF System Programmer's Guide

Trusted block section X'12'
Trusted block section X'12' contains information that defines a rule. A trusted block can have zero or more
rule sections.

1. A trusted block with no rule sections can be used by the PKA Key Token Change and PKA Key Import
callable services. A trusted block with no rule sections can be used by the Digital Signature Verify verb,
provided there is an RSA public-key section that has its key-usage flag set to allow digital signature
operations.

2. At least one rule section is required when the Remote Key Export verb is used to:

• Generate an RKX key-token.
• Export an RKX key-token.
• Export a CCA DES key-token.
• Generate or export a key encrypted by a public key. The public key is contained in a vendor
certificate (section X'11'), and is the root certification key for the ATM vendor. It is used to verify the
digital signature on public-key certificates for specific individual ATMs.

3. If a trusted block has multiple rule sections, each rule section must have a unique 8-character Rule ID.

Section X'12' is the only section that is allowed to have multiple sections. Section X'12' is optional.
Multiple sections are allowed.

Note: The overall length of the trusted block can not exceed its maximum size of 3500 bytes.

Five subsections (TLV objects) are defined.

This section is defined in the following table:

Table 98. Trusted block rule section (X'12')

Offset
(bytes)

Length (bytes) Description

Offset
(bytes)

Length (bytes) Description

000 001 Section identifier:

X'12'
Trusted block rule.

001 001 Section version number (X'00').

002 002 Section length in bytes (20+yyy).

004 008 Rule ID (in ASCII).

An 8-byte character string that uniquely identifies the rule within the trusted block.

Valid ASCII characters are: A...Z, a...z, 0...9, - (hyphen), and _ (underscore), left-justified and
padded on the right with space characters.

012 004 Flags (undefined flag bits are reserved and must be zero).

X'00000000'
Generate new key.

X'00000001'
Export existing key.

016 001 Generated key length.

Length in bytes of key to be generated when flags value (offset 012) is set to generate a new
key; otherwise, ignore this value. Valid values are 8, 16, or 24; return an error if not valid.

Appendix A. Diagnosis reference information 347

Table 98. Trusted block rule section (X'12') (continued)

Offset
(bytes)

Length (bytes) Description

017 001 Key-check algorithm identifier (all others are reserved and must not be used):

Value
Meaning

X'00'
Do not compute key-check value. In a call to CSNDRKX or CSNFRKX, set the
key_check_length variable to zero.

X'01'
Encrypt an 8-byte block of binary zeros with the key. In a call to CSNDRKX or CSNFRKX,
set the key_check_length variable to 8.

X'02'
Compute the MDC-2 hash of the key. In a call to CSNDRKX or CSNFRKX, set the
key_check_length variable to 16.

018 001 Symmetric encrypted output key format flag (all other values are reserved and must not be
used).

Return the indicated symmetric key-token by using the sym_encrypted_key_identifier
parameter.

Value
Meaning

X'00'
Return an RKX key-token encrypted under a variant of the MAC key.

Note: This is the only key format that is permitted when the flags value (offset 012) is set
to generate a new key.

X'01'
Return a CCA DES key-token encrypted under a transport key.

Note: This is the only key format that is permitted when the flags value (offset 012) is set
to export an existing key.

019 001 Asymmetric encrypted output key format flag (all other values are reserved and must not be
used).

Return the indicated asymmetric key-token in the asym_encrypted_key variable.

Value
Meaning

X'00'
Do not return an asymmetric key. Set the asym_encrypted_key_length variable to zero.

X'01'
Output in PKCS1.2 format.

X'02'
Output in RSAOAEP format.

020 yyy Rule section subsections (tag-length-value objects). A series of 0 - 5 objects in TLV format.

Note: See “Number representation in trusted blocks” on page 345.

Section X'12' has five rule subsections (tag-length-value objects) defined. These subsections are
summarized in the following table:

Table 99. Summary of trusted block rule subsection

Rule
subsection
tag

TLV object Optional or required Comments

X'0001' Transport key
variant

Optional Contains variant to be exclusive-ORed into the cleartext transport key.

X'0002' Transport key
rule
reference

Optional; required to use
an RKX key-token as a
transport key

Contains the rule ID for the rule that must have been used to create
the transport key.

348 z/OS: z/OS ICSF System Programmer's Guide

Table 99. Summary of trusted block rule subsection (continued)

Rule
subsection
tag

TLV object Optional or required Comments

X'0003' Common
export key
parameters

Optional for key
generation; required for
key export of an existing
key

Contains the export key and source key minimum and maximum
lengths, an output key variant length and variant, a CV length, and a CV
to be exclusive-ORed with the cleartext transport key to control usage
of the key.

X'0004' Source key
reference

Optional; required if the
source key is an RKX key-
token

Contains the rule ID for the rule used to create the source key.

Note: Include all rules that will ever be needed when a trusted block is
created. A rule cannot be added to a trusted block after it has been
created.

X'0005' Export key
CCA token
parameters

Optional; used for export
of CCA DES key tokens
only

Contains mask length, mask, and CV template to limit the usage of the
exported key. Also contains the template length and template that
defines which source key labels are allowed.

The key type of a source key input parameter can be "filtered" by using
the export key CV limit mask (offset 005) and limit template (offset
005+yyy) in this subsection.

Note: See “Number representation in trusted blocks” on page 345.

Trusted block section X'12' subsection X'0001'

Subsection X'0001' of the trusted block rule section (X'12') is the transport key variant TLV object.
This subsection is optional. It contains a variant to be exclusive-ORed into the cleartext transport key.

This subsection is defined in the following table:

Table 100. Transport key variant subsection (X'0001' of trusted block rule section (X'12')

Offset
(bytes)

Length (bytes) Description

000 002 Subsection tag:

X'0001'
Transport key variant TLV object.

002 002 Subsection length in bytes (8+nnn).

004 001 Subsection version number (X'00').

005 002 Reserved, must be binary zero.

007 001 Length of variant field in bytes (nnn).

This length must be greater than or equal to the length of the transport key that is
identified by the transport_key_identifier parameter. If the variant is longer than the key,
truncate it on the right to the length of the key before use.

008 nnn Transport key variant.

Exclusive-OR this variant into the cleartext transport key, provided: (1) the length of the
variant field value (offset 007) is not zero, and (2) the symmetric encrypted output key
format flag (offset 018 in section X'12') is X'01'.

Note: A transport key is not used when the symmetric encrypted output key is in RKX
key-token format.

Note: See “Number representation in trusted blocks” on page 345.

Trusted block section X'12' subsection X'0002'

Subsection X'0002' of the trusted block rule section (X'12') is the transport key rule reference TLV
object. This subsection is optional. It contains the rule ID for the rule that must have been used to
create the transport key. This subsection must be present to use an RKX key-token as a transport key.

This subsection is defined in the following table:

Appendix A. Diagnosis reference information 349

Table 101. Transport key rule reference subsection (X'0002') of trusted block rule section (X'12')

Offset (bytes) Length (bytes) Description

000 002 Subsection tag:

X'0002'
Transport key rule reference TLV object.

002 002 Subsection length in bytes (14).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

006 008 Rule ID.

Contains the rule identifier for the rule that must have been used to create the RKX key-
token used as the transport key.

The Rule ID is an 8-byte string of ASCII characters, left-justified and padded on the right
with space characters. Acceptable characters are A...Z, a...z, 0...9, - (X'2D'), and _ (X'5F').
All other characters are reserved for future use.

Trusted block section (X'12') subsection X'0003'

Subsection X'0003' of the trusted block rule section (X'12') is the common export key parameters TLV
object. This subsection is optional, but is required for the key export of an existing source key
(identified by the source_key_identifier parameter) in either RKX key-token format or CCA DES key-
token format. For new key generation, this subsection applies the output key variant to the cleartext
generated key, if such an option is wanted. It contains the input source key and output export key
minimum and maximum lengths, an output key variant length and variant, a CV length, and a CV to be
exclusive-ORed with the cleartext transport key.

This subsection is defined in the following table:

Table 102. Common export key parameters subsection (X'0003') of trusted block rule section (X'12')

Offset (bytes) Length (bytes) Description

000 002 Subsection tag:

X'0003'
Common export key parameters TLV object.

002 002 Subsection length in bytes (12+xxx+yyy).

004 001 Subsection version number (X'00').

005 002 Reserved, must be binary zero.

007 001 Flags (must be set to binary zero).

008 001 Export key minimum length in bytes. Length must be 8, 16, or 24.

Also applies to the source key.

009 001 Export key maximum length in bytes (yyy). Length must be 8, 16, or 24.

Also applies to the source key.

010 001 Output key variant length in bytes (xxx).

Valid values are 0 or 8 - 255. If greater than 0, the length must be at least as long as the
longest key ever to be exported that uses this rule. If the variant is longer than the key,
truncate it on the right to the length of the key before use.

Note: The output key variant (offset 011) is not used if this length is zero.

011 xxx Output key variant.

The variant can be any value. Exclusive-OR this variant into the cleartext value of the
output.

350 z/OS: z/OS ICSF System Programmer's Guide

Table 102. Common export key parameters subsection (X'0003') of trusted block rule section (X'12') (continued)

Offset (bytes) Length (bytes) Description

011+xxx 001 CV length in bytes (yyy).

• If the length is not 0, 8, or 16, return an error.
• If the length is 0, and if the source key is a CCA DES key-token, preserve the CV in the

symmetric encrypted output if the output is to be in the form of a CCA DES key-token.
• If a non-zero length is less than the length of the key that is identified by the

source_key_identifier parameter, return an error.
• If the length is 16, and if the CV (offset 012+xxx) is valued to 16 bytes of X'00' (ignoring

the key-part bit), then:

1. Ignore all CV bit definitions.
2. If CCA DES key-token format, set the flag byte of the symmetric encrypted output key

to indicate that a CV value is present.
3. If the source key is 8 bytes, do not replicate the key to 16 bytes.

012+xxx yyy CV.

Place this CV into the output exported key-token, if the symmetric encrypted output key
format selected (offset 018 in rule section) is CCA DES key-token.

• If the symmetric encrypted output key format flag (offset 018 in section X'12') indicates
return an RKX key-token (X'00'), then ignore this CV. Otherwise, exclusive-OR this CV into
the cleartext transport key.

• Exclusive-OR the CV of the source key into the cleartext transport key if the CV length
(offset 011+xxx) is set to 0. If a transport key to encrypt a source key has equal left and
right key halves, return an error. Replicate the key halves of the key that is identified by
the source_key_identifier parameter whenever all of these conditions are met:

1. The Replicate Key command (offset X'00DB') is enabled in the active role.
2. The CV length (offset 011+xxx) is 16, and both CV halves are non-zero.
3. The source_key_identifier parameter (contained in either a CCA DES key-token or RKX

key-token) identifies an 8-byte key.
4. The key-form bits (40 - 42) of this CV do not indicate a single-length key (are not set

to zero)
5. Key-form bit 40 of this CV does not indicate that the key is to have guaranteed unique

halves (is not set to 1).

Note: A transport key is not used when the symmetric encrypted output key is in RKX key-
token format.

Note: See “Number representation in trusted blocks” on page 345.

Trusted block section X'12' subsection X'0004'

Subsection X'0004' of the trusted block rule section (X'12') is the source key rule reference TLV
object. This subsection is optional, but is required if using an RKX key-token as a source key
(identified by source_key_identifier parameter). It contains the rule ID for the rule that is used to
create the export key. If this subsection is not present, an RKX key-token format source key will not be
accepted for use.

This subsection is defined in the following table:

Table 103. Source key rule reference subsection (X'0004' of trusted block rule section (X'12')

Offset (bytes) Length (bytes) Description

000 002 Subsection tag:

X'0004'
Source key rule reference TLV object.

002 002 Subsection length in bytes (14).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

Appendix A. Diagnosis reference information 351

Table 103. Source key rule reference subsection (X'0004' of trusted block rule section (X'12') (continued)

Offset (bytes) Length (bytes) Description

006 008 Rule ID.

Rule identifier for the rule that must have been used to create the source key.

The Rule ID is an 8-byte string of ASCII characters, left-justified and padded on the right
with space characters. Acceptable characters are A...Z, a...z, 0...9, - (X'2D'), and _ (X'5F').
All other characters are reserved for future use.

Note: See “Number representation in trusted blocks” on page 345.

Trusted block section X'12' subsection X'0005'

Subsection X'0005' of the trusted block rule section (X'12') is the export key CCA token parameters
TLV object. This subsection is optional. It contains a mask length, mask, and template for the export
key CV limit. It also contains the template length and template for the source key label. When using a
CCA DES key-token as a source key input parameter, its key type can be "filtered" by using the export
key CV limit mask (offset 005) and limit template (offset 005+yyy) in this subsection.

This subsection is defined in the following table:

Table 104. Export key CCA token parameters subsection (X'0005') of trusted block rule section (X'12')

Offset (bytes) Length (bytes) Description

000 002 Subsection tag:

X'0005'
Export key CCA token parameters TLV object.

002 002 Subsection length in bytes (10+yyy+yyy+zzz).

004 001 Subsection version number (X'00').

005 002 Reserved, must be binary zero.

007 001 Flags (must be set to binary zero).

008 001 Export key CV limit mask length in bytes (yyy).

Do not use CV limits if this CV limit mask length (yyy) is zero. Use CV limits if yyy is non-
zero, in which case yyy:

• Must be 8 or 16.
• Must not be less than the export key minimum length (offset 008 in subsection X'0003').
• Must be equal in length to the actual source key length of the key.

Example: An export key minimum length of 16 and an export key CV limit mask length of 8
returns an error.

009 yyy Export key CV limit mask (does not exist if yyy=0).

Indicates which CV bits to check against the source key CV limit template (offset 009+yyy).

Examples: A mask of X'FF' means check all bits in a byte. A mask of X'FE' ignores the parity
bit in a byte.

352 z/OS: z/OS ICSF System Programmer's Guide

Table 104. Export key CCA token parameters subsection (X'0005') of trusted block rule section (X'12') (continued)

Offset (bytes) Length (bytes) Description

009+yyy yyy Export key CV limit template (does not exist if yyy=0).

Specifies the required values for those CV bits that are checked based on the export key CV
limit mask (offset 009).

The export key CV limit mask and template have the same length, yyy. This is because these
two variables work together to restrict the acceptable CVs for CCA DES key tokens to be
exported. The checks work as follows:

1. If the length of the key to be exported is less than yyy, return an error.
2. Logical AND the CV for the key to be exported with the export key CV limit mask.
3. Compare the result to the export key CV limit template.
4. Return an error if the comparison is not equal.

Examples: An export key CV limit mask of X'FF' for CV byte 1 (key type) along with an
export key CV limit template of X'3F' (key type CVARENC) for byte 1 filters out all key types
except CVARENC keys.

Note: Using the mask and template to permit multiple key types is possible, but cannot
consistently be achieved with one rule section. For example, setting bit 10 to 1 in the mask
and the template permits PIN processing keys and cryptographic variable encrypting keys,
and only those keys. However, a mask to permit PIN-processing keys and key-encrypting
keys, and only those keys, is not possible. In this case, multiple rule sections are required,
one to permit PIN-processing keys and the other to permit key-encrypting keys.

009+

yyy+
yyy

001 Source key label template length in bytes (zzz).

Valid values are 0 and 64. Return an error if the length is 64 and a source key label is not
provided.

010+

yyy+
yyy

zzz Source key label template (does not exist if zzz=0).

If a key label is identified by the source_key_identifier parameter, verify that the key label
name matches this template. If the comparison fails, return an error. The source key label
template must conform to the following rules:

• The key label template must be 64 bytes.
• The first character cannot be in the range X'00' - X'1F', nor can it be X'FF'.
• The first character cannot be numeric (X'30' - X'39').
• A key label name is terminated by a space character (X'20') on the right and must be

padded on the right with space characters.
• The only special characters that are permitted are #, $, @, and * (X'23', X'24', X'40', and

X'2A').
• The wildcard X'2A' (*) is only permitted as the first character, the last character, or the

only character in the template.
• Only alphanumeric characters (a...z, A...Z, 0...9), the four special characters (X'23', X'24',

X'40', and X'2A'), and the space character (X'20') are allowed.

Note: See “Number representation in trusted blocks” on page 345.

Trusted block section X'13'
Trusted block section X'13' contains the name (key label). The trusted block name section provides a 64-
byte variable to identify the trusted block, just as key labels are used to identify other CCA keys. This
name, or label, enables a host access-control system such as RACF to use the name to verify that the
application has authority to use the trusted block.

Section X'13' is optional. No multiple sections are allowed. It has no subsections that are defined. This
section is defined in the following table:

Appendix A. Diagnosis reference information 353

Table 105. Trusted block key label (name) section X'13'

Offset (bytes) Length (bytes) Description

000 001 Section identifier:

X'13'
Trusted block name (key label).

001 001 Section version number (X'00').

002 002 Section length in bytes (68).

004 064 Name (key label).

Note: See “Number representation in trusted blocks” on page 345.

Trusted block section X'14'
Trusted block section X'14' contains control and security information that is related to the trusted block.
This information section is separate from the public key and other sections because this section is
required while the others are optional. This section contains the cryptographic information that
guarantees its integrity and binds it to the local system.

Section X'14' is required. No multiple sections are allowed. Two subsections are defined. This section is
defined in the following table:

Table 106. Trusted block information section X'14'

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:
X'14'

Trusted block information.

001 001 Section version number (X'00').

002 002 Section length in bytes (10+xxx).

004 002 Reserved, binary zero.

006 004 Flags:
X'00000000'

Trusted block is in the inactive state.
X'00000001'

Trusted block is in the active state.

010 xxx Information section subsections (tag-length-value objects).

One or two objects in TLV format.

Note: See “Number representation in trusted blocks” on page 345.

Section X'14' has two information subsections (tag-length-value objects) defined. These subsections are
summarized in the following table:

Table 107. Summary of trusted block information subsections

Rule
subsection tag

TLV object Optional or
required

Comments

X'0001' Protection
information

Required Contains the encrypted 8-byte confounder and triple-length (24-byte)
MAC key, the ISO 16609 TDES CBC MAC value, and the MKVP of the
PKA master key (computed by using MDC4).

354 z/OS: z/OS ICSF System Programmer's Guide

Table 107. Summary of trusted block information subsections (continued)

Rule
subsection tag

TLV object Optional or
required

Comments

X'0002' Activation and
expiration dates

Optional Contains flags indicating whether the coprocessor is to validate dates,
and contains the activation and expiration dates that are considered
valid for the trusted block.

Note: See “Number representation in trusted blocks” on page 345.

Trusted block section X'14' subsection X'0001'

Subsection X'0001' of the trusted block information section (X'14') is the protection information TLV
object. This subsection is required. It contains the encrypted 8-byte confounder and triple-length (24-
byte) MAC key, the ISO-16609 TDES CBC MAC value, and the MKVP of the PKA master key (computed
by using MDC4).

This subsection is defined in the following table:

Table 108. Protection information subsection (X'0001') of trusted block information section (X'14')

Offset (bytes) Length (bytes) Description

000 002 Subsection tag:

X'0001'
Trusted block information TLV object.

002 002 Subsection length in bytes (62).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

006 032 Encrypted MAC key.

Contains the encrypted 8-byte confounder and triple-length (24-byte) MAC key in the
following format:

Offset
Description

00 - 07
Confounder.

08 - 15
Left key.

16 - 23
Middle key.

24 - 31
Right key.

038 008 MAC.

Contains the ISO-16609 TDES CBC message authentication code value.

046 016 MKVP.

Contains the PKA master key verification pattern, computed by using MDC4, when the
trusted block is in internal form, otherwise contains binary zero.

Note: See “Number representation in trusted blocks” on page 345.

Trusted block section X'14' subsection X'0002'

Subsection X'0002' of the trusted block information section (X'14') is the activation and expiration
dates TLV object. This subsection is optional. It contains flags indicating whether the coprocessor is to
validate dates, and contains the activation and expiration dates that are considered valid for the
trusted block.

This subsection is defined in the following table:

Appendix A. Diagnosis reference information 355

Table 109. Activation and expiration dates subsection (X'0002') of trusted block information section (X'14')

Offset (bytes) Length (bytes) Description

000 002 Subsection tag:

X'0002'
Activation and expiration dates TLV object.

002 002 Subsection length in bytes (16).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

006 002 Flags:

X'0000'
The coprocessor does not check dates.

X'0001'
The coprocessor checks dates.

Compare the activation date (offset 008) and the expiration date (offset 012) to the
coprocessor's internal real-time clock. Return an error if the coprocessor date is before
the activation date or after the expiration date.

008 004 Activation date.

Contains the first date that the trusted block can be used for generating or exporting keys.
Format of the date is YYMD, where:

YY
Big-endian year (return an error if greater than 9999).

M
Month (return an error if any value other than X'01' - X'0C').

D
Day of month (return an error if any value other than X'01' - X'1F'; day must be valid for
given month and year, including leap years).

Return an error if the activation date is after the expiration date or is not valid.

012 004 Expiration date.

Contains the last date that the trusted block can be used. Same format as activation date
(offset 008). Return an error if date is not valid.

Note: See “Number representation in trusted blocks” on page 345.

Trusted block section X'15'
Trusted block section X'15' contains application-defined data. The trusted block application-defined data
section can be used to include application-defined data in the trusted block. The purpose of the data in
this section is defined by the application; it is not examined or used by CCA in any way.

Section X'15' is optional. No multiple sections are allowed. It has no subsections that are defined. This
section is defined in the following table:

Table 110. Trusted block application-defined data section X'15'

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:
X'15'

Application-defined data.

001 001 Section version number (X'00').

002 002 Section length (6+xxx).

356 z/OS: z/OS ICSF System Programmer's Guide

Table 110. Trusted block application-defined data section X'15' (continued)

Offset
(bytes)

Length
(bytes)

Description

004 002 Application data length (xxx).

The value of xxx can be from 0 bytes to a length that does not cause the
trusted block to exceed its maximum size of 3500 bytes.

006 xxx Application-defined data.

Can be used to hold a public-key certificate for the trusted public key.

Note: See “Number representation in trusted blocks” on page 345.

Data areas
These topics present the format of the Cryptographic Communication Vector Table (CCVT) and the
Cryptographic Communication Vector Table Extension (CCVE) data areas.

The Cryptographic Communication Vector Table (CCVT)
The CCVT is the ICSF base control block and contains addresses of common areas for use by ICSF
components. Indicators in the CCVT also provide ICSF status information. The CCVT is getmained in
subpool 245 under the line. The ICSF CCVT is anchored off of SCVTCCVT in the SCVT macro.

ONLY these fields are part of the programming interface:

• CCVTDACC
• CCVTRLVL
• CCVTCCVE
• CCVTHFLG
• CCVTSFLG
• CCVTPRPC
• CCVTINST
• CCVTINS2
• CCVTLNTH
• CCVTFMID
• CCVT_USERPARM
• CCVT_PKDSN
• CCVTNAMES
• CCVT_CKDSN
• CCVT_TKDSN
• CCVT_STATF

Table 111 on page 358 describes the contents of the Cryptographic Communication Vector Table. Any bits
that are not described in the table are reserved.

Appendix A. Diagnosis reference information 357

Table 111. Cryptographic communication vector table

Offs
et
(Dec
)

Numbe
r of
bytes Field name Description

9 1 CCVT_STATF Statistic option flags.

12 4 CCVTRLVL ICSF level.

16 4 CCVTCCVE Cryptographic Communication Vector Table Extension (CCVE) address.

The address of a private area extension of the CCVT. You should place any
fields not needed by other address spaces in the CCVE.

28 4 CCVTPRPC Entry point for the pre-PC processing module, CSFARPC.

32 4 CCVTINST For installation use.

56 8 CCVTINS2 An 8-byte area for installation use.

68 4 CCVTLNTH Maximum installation data length.

80 1 CCVTHFLG Flag bytes.
Bit

Meaning When Set On
0

Crypto assist instructions available.
1

Additional secure Crypto device available.
2

Support for 64-bit callers.
3

ICSF Cross-System Services environment is active for CKDS.
4

ICSF Cross-System Services environment is active for TKDS.
5

RSA 4096-bit function enabled and the RNGL service is available.
6

Secure key AES is available.
7

AES master key is active.

358 z/OS: z/OS ICSF System Programmer's Guide

Table 111. Cryptographic communication vector table (continued)

Offs
et
(Dec
)

Numbe
r of
bytes Field name Description

81 1 CCVTSFLG Flag bytes.
Bit

Meaning When Set On
0

ICSF during initialization.
1

ICSF was able to complete cleanup, so no EOM cleanup is needed.
2

PKCS #11 operating in FIPS standard mode.
3

PKCS #11 operating in FIPS compatibility mode.
4

Reserved for ICSF use.
5

ICSF is available to be called.

136 8 CCVTFMID ICSF FMID.

144 8 CCVT_USERPARM ICSF user parameter.

276 4 CCVTDACC ICSF DAC instructions control block for RMF.

484 44 CCVT_PKDSN Name of the active PKDS. If no PKDS was specified, the first character will
be an EBCDIC blank (X'40').

528 4 CCVTNAMES Address of CSFNAMES arrays.

704 44 CCVT_CKDSN Name of the active CKDS. If no CKDS was specified, the first character will
be an EBCDIC blank (X'40').

748 44 CCVT_TKDSN Name of the active TKDS.

The Cryptographic Communication Vector Table Extension (CCVE)
The CCVE is an extension of the CCVT that contains fields that can exist. The CCVE exists in ICSF extended
private. It should contain any ICSF base control block fields that are not needed by other address spaces.

ONLY these fields are part of the programming interface:

• CCVEINPP
• CCVEINPL
• CCVESECC

Table 112 on page 359 describes the contents of the Cryptographic Communication Vector Table
Extension. Any bits that are not described in the table are reserved.

Table 112. Cryptographic Communication Vector Table Extension

Offse
t
(Dec)

Number
of Bytes Field Name Description

328 4 CCVEINPP Pointer to installation optional parameter.

Appendix A. Diagnosis reference information 359

Table 112. Cryptographic Communication Vector Table Extension (continued)

Offse
t
(Dec)

Number
of Bytes Field Name Description

332 4 CCVEINPL Length of the installation optional parameter.

372 8 CCVESECC Reserved for security exit.

Generic Service Table (CSFMGST)
Table 113 on page 360 describes the format of the generic service table, a control block that is used to
control the call of installation-defined services.

Table 113. Generic Service Table Block Format

Offset (Dec)
Number of
Bytes Description

0 4 EBCDIC ID.

4 2 Version number.

6 2 Length of the MGST.

8 4 Number of entries in the array.

12 4 Subpool this table is in.

16 4 Reserved.

20 4 Reserved.

24 4 Reserved.

28 4 Reserved.

Variable Section of the MGST (Repeat for each entry in the array)

0 8 IBM-assigned name.

8 8 Installation-assigned name.

16 4 Flags.
Bit

Meaning When Set On
0

Service has been requested by the installation.
1

Service has been loaded.
2

Service is active.
3

Service is required.
4

Service is UDX.

20 4 Address of the service.

24 4 Installation-assigned service number.

28 4 Reserved.

360 z/OS: z/OS ICSF System Programmer's Guide

RMF measurements table
Table 114 on page 361 describes the contents of the performance measurements for RMF. The count
fields are double-word length.

Table 114. RMF measurements record format

Offset (Dec)
Number of
bytes Field name Description

0 4 DACC_ID The DACC ID.

4 4 DACC_VER The version number of the block.

8 4 DACC_LEN The control block length.

12 2 DACC_ENT_CNT Number of entries.

14 2 DACC_ENT_LEN Length of each entry.

16 8 DACC_ENT_ID Identifier of count array - character 'ENCSDES'. The
Encipher service will collect data as follows:

• Collection for single DES is done separately. The number
of service calls, number of bytes of data enciphered, and
the number of hardware instructions used to encipher
the data will be collected.

24 8 DACC_ENT_SVC_CNT Count of ENCSDES service calls.

32 8 DACC_ENT_BYT_CNT Count of ENCSDES bytes processed.

40 8 DACC_ENT_INT_CNT Count of ENCSDES instructions.

48 8 DACC_ENT_ID Identifier of count array - character 'ENCTDES'. The
Encipher service will collect data as follows:

• Double and triple DES will be counted together. The
number of service calls, number of bytes of data
enciphered, and the number of hardware instructions
used to encipher the data will be collected.

56 8 DACC_ENT_SVC_CNT Count of ENCTDES service calls.

64 8 DACC_ENT_BYT_CNT Count of ENCTDES bytes processed.

72 8 DACC_ENT_INT_CNT Count of ENCTDES instructions.

80 8 DACC_ENT_ID Identifier of count array - character DECSDES. The
Decipher service will collect data as follows:

• Collection for single DES is done separately. The number
of service calls, number of bytes of data deciphered, and
the number of hardware instructions used to decipher
the data will be collected.

88 8 DACC_ENT_SVC_CNT Count of DECSDES service calls.

96 8 DACC_ENT_BYT_CNT Count of DECSDES bytes processed.

104 8 DACC_ENT_INT_CNT Count of DECSDES instructions.

Appendix A. Diagnosis reference information 361

Table 114. RMF measurements record format (continued)

Offset (Dec)
Number of
bytes Field name Description

112 8 DACC_ENT_ID Identifier of count array - character DECTDES. The
Decipher service will collect data as follows:

• Double and triple DES will be counted together. The
number of service calls, number of bytes of data
deciphered, and the number of hardware instructions
used to decipher the data will be collected.

120 8 DACC_ENT_SVC_CNT Count of DECTDES service calls.

128 8 DACC_ENT_BYT_CNT Count of DECTDES bytes processed.

136 8 DACC_ENT_INT_CNT Count of DECTDES instructions.

144 8 DACC_ENT_ID Identifier of count array - character MACGEN. The MAC
Generate service will collect data as follows:

• Single and various double key MAC will be gathered
together. The number of service calls, number of bytes
of data MAC'd, and the number of instructions will be
collected.

152 8 DACC_ENT_SVC_CNT Count of MACGEN service calls.

160 8 DACC_ENT_BYT_CNT Count of MACGEN bytes processed.

168 8 DACC_ENT_INT_CNT Count of MACGEN instructions.

176 8 DACC_ENT_ID Identifier of count array - character MACVER. The MAC
Verify service will collect data as follows:

• Single and various double key MAC will be gathered
together. The number of service calls, number of bytes
of data MAC'd, and the number of instructions will be
collected.

184 8 DACC_ENT_SVC_CNT Count of MACVER service calls.

192 8 DACC_ENT_BYT_CNT Count of MACVER bytes processed.

200 8 DACC_ENT_INT_CNT Count of MACVER instructions.

208 8 DACC_ENT_ID Identifier of count array - character OWH. The One Way
Hash service will collect data as follows:

• For SHA-1, the number of service calls, number of bytes
of bytes of data hashed, and the number of instructions
will be collected.

216 8 DACC_ENT_SVC_CNT Count of OWH service calls.

224 8 DACC_ENT_BYT_CNT Count of OWH bytes processed.

232 8 DACC_ENT_INT_CNT Count of OWH instructions.

240 8 DACC_ENT_ID Identifier of count array - character PTR. The Encrypted
PIN Translate, Encrypted PIN Translate2, and Encrypted
PIN Translate Enhanced services will collect data as
follows:

• Collect the number of service calls only.

362 z/OS: z/OS ICSF System Programmer's Guide

Table 114. RMF measurements record format (continued)

Offset (Dec)
Number of
bytes Field name Description

248 8 DACC_ENT_SVC_CNT Count of PTR, PTR2, and PTRE service calls.

256 16 Reserved.

272 8 DACC_ENT_ID Identifier of count array - character PVR. The PIN Verify
service will collect data as follows:

• Collect the number of service calls only.

280 8 DACC_ENT_SVC_CNT Count of PVR service calls.

288 16 Reserved.

304 8 DACC_ENT_ID Identifier of count array - character OWH256. The One
Way Hash service will collect data as follows:

• For SHA-224 and SHA-256, the number of service calls,
number of bytes of data hashed, and the number of
instructions will be collected.

312 8 DACC_ENT_SVC_CNT Count of OWH service calls for SHA-224 and SHA-256.

320 8 DACC_ENT_BYT_CNT Count of OWH bytes processed for SHA-224 and
SHA-256.

328 8 DACC_ENT_INT_CNT Count of OWH instructions for SHA-224 and SHA-256.

336 8 DACC_ENT_ID Identifier of count array - character OWH512. The One
Way Hash service will collect data as follows:

• For SHA-384 and SHA-512, the number of service calls,
number of bytes of data hashed, and the number of
instructions will be collected.

344 8 DACC_ENT_SVC_CNT Count of OWH service calls for SHA-384 and SHA-512.

352 8 DACC_ENT_BYT_CNT Count of OWH bytes processed for SHA-384 and
SHA-512.

360 8 DACC_ENT_INT_CNT Count of OWH instructions for SHA-384 and SHA-512.

368 8 DACC_ENT_ID Identifier of count array - character ′ENCAES′. The
Symmetric algorithm encipher service will collect data as
follows: The number of service calls, number of bytes of
data enciphered, and the number of instructions used to
encipher the data will be collected.

376 8 DACC_ENT_SVC_CNT Count of SAE service calls

384 8 DACC_ENT_BYT_CNT Count of ENCAES bytes processed

392 8 DACC_ENT_INT_CNT Count of ENCAES instruction

400 8 DACC_ENT_ID Identifier of count array - character ′DECAES′. The
Symmetric algorithm decipher service will collect data as
follows: the number of service calls, number of bytes of
data deciphered, and the number of instructions used to
decipher the data will be collected.

408 8 DACC_ENT_SVC_CNT Count of SAD service calls

Appendix A. Diagnosis reference information 363

Table 114. RMF measurements record format (continued)

Offset (Dec)
Number of
bytes Field name Description

416 8 DACC_ENT_BYT_CNT Count of DECAES bytes processed

424 8 DACC_ENT_INT_CNT Count of DECAES instruction

432 8 DACC_ENT_ID Identifier of count array - character 'DSGRSA'. The Digital
Signature Generate service will collect the number of
service calls processed to generate a digital signature
using an RSA private key.

440 8 DACC_ENT_SVC_CNT Count of DSG service calls using an RSA private key

448 16 Reserved

464 8 DACC_ENT_ID Identifier of count array - character 'DSGECC'. The Digital
Signature Generate service will collect the number of
service calls processed to generate a digital signature
using an ECC private key.

472 8 DACC_ENT_SVC_CNT Count of DSG service calls using an ECC private key

480 16 Reserved

496 8 DACC_ENT_ID Identifier of count array - character 'DSVRSA'. The Digital
Signature Verify service will collect the number of service
calls processed to verify a digital signature using an RSA
private key.

504 8 DACC_ENT_SVC_CNT Count of DSV service calls using an RSA private key

512 16 Reserved

528 8 DACC_ENT_ID Identifier of count array - character 'DSVECC'. The Digital
Signature Verify service collects the number of service
calls processed to verify a digital signature using an ECC
private key.

536 8 DACC_ENT_SVC_CNT Count of DSV service calls using an ECC private key

544 16 Reserved

560 8 DACC_ENT_ID Identifier of count array - character 'MACGEN2'. The MAC
Generate2 service collects data as follows:

• The number of service calls.
• The number of bytes of data MACed.
• The number of instructions used to MAC the data.

568 8 DACC_ENT_SVC_CNT Count of MACGEN2 service calls.

576 8 DACC_ENT_BYT_CNT Count of MACGEN2 bytes processed.

584 8 DACC_ENT_INT_CNT Count of MACGEN2 instructions.

592 8 DACC_ENT_ID Identifier of count array - character 'MACVER2'. The MAC
Verify2 service collects data as follows:

• The number of service calls.
• The number of bytes of data MACed.
• The number of instructions used to MAC the data.

364 z/OS: z/OS ICSF System Programmer's Guide

Table 114. RMF measurements record format (continued)

Offset (Dec)
Number of
bytes Field name Description

600 8 DACC_ENT_SVC_CNT Count of MACVER2 service calls.

608 8 DACC_ENT_BYT_CNT Count of MACVER2 bytes processed.

616 8 DACC_ENT_INT_CNT Count of MACVER2 instructions.

624 8 DACC_ENT_ID Identifier of count array - character 'FPEE'. The FPE
encipher service collects data as follows: The number of
service calls, number of bytes of data encrypted, and the
number of instructions used to encipher the data.

632 8 DACC_ENT_SVC_CNT Count of FPEE service calls.

640 8 DACC_ENT_BYT_CNT Count of FPEE bytes processed.

648 8 DACC_ENT_INT_CNT Count of FPEE instructions.

656 8 DACC_ENT_ID Identifier of count array - character 'FPED'. The FPE
decipher service collects data as follows: The number of
service calls, number of bytes of data decrypted, and the
number of instructions used to decrypt the data.

664 8 DACC_ENT_SVC_CNT Count of FPED service calls.

672 8 DACC_ENT_BYT_CNT Count of FPED bytes processed.

680 8 DACC_ENT_INT_CNT Count of FPED instructions.

688 8 DACC_ENT_ID Identifier of count array - character 'FPET'. The FPE
translate service collects data as follows: The number of
service calls, number of bytes of data translated, and the
number of instructions used to translate the data.

696 8 DACC_ENT_SVC_CNT Count of FPET service calls.

704 8 DACC_ENT_BYT_CNT Count of FPET bytes processed.

712 8 DACC_ENT_INT_CNT Count of FPET instructions.

16 +
DACC_ENT_
CNT
*
DACC_ENT_
LEN

1 DACC_DOMAIN_ID Domain ID assign to LPAR. This field will only be part of
the block when the version number (DACC_VER) is '05' or
later.

17 +
DACC_ENT_
CNT
*
DACC_ENT_
LEN

3 Reserved. This field will only be part of the block when the
version number (DACC_VER) is '05' or later.

Appendix A. Diagnosis reference information 365

366 z/OS: z/OS ICSF System Programmer's Guide

Appendix B. ICSF SMF records

This topic contains the ICSF SMF records.

Record type 82 (52) — ICSF record
Record type 82 is used to record information about the events and operations of the Integrated
Cryptographic Service Facility (ICSF) program product. Record type 82 is written to the SMF data set at
the completion of certain cryptographic functions:

• Subtype 1 — is written whenever ICSF is started or the options refresh is performed.
• Subtype 7 — is written when an operational key is imported from a coprocessor.
• Subtype 8 — is written whenever the in-storage copy of the CKDS is refreshed.
• Subtype 9 — is written whenever the CKDS is updated by a dynamic CKDS update service or the KDS

Metadata write service or the CKDS KEYS utility.
• Subtype 13 — is written whenever the PKDS is updated by a dynamic PKDS update service or the KDS

Metadata write service or the PKDS KEYS utility.
• Subtype 14 — is written when a clear master key part is entered on a cryptographic coprocessor.
• Subtype 15 — is written whenever a retained key is created or deleted.
• Subtype 16 — is written for each request and reply from calls to the CSFPCI service by TKE.
• Subtype 18 — is written when the configuration of a coprocessor or accelerator changes.
• Subtype 19 — is written periodically to record processing times for PCIXCC coprocessors.
• Subtype 20 — is written periodically to record processing times for coprocessors or accelerators.
• Subtype 21 — is written when ICSF issues IXCJOIN to join the ICSF sysplex group or issues IXCLEAVE

to leave the sysplex group.
• Subtype 22 — is written when the Trusted Block Create Callable services are invoked.
• Subtype 23 — is written when the token data set (TKDS) is updated
• Subtype 24 — is written when duplicate tokens are found.
• Subtype 25 — is written when key store policy checking detects the unauthorized use of a key token.
• Subtype 26 — is written whenever the in-storage copy of the PKDS is refreshed.
• Subtype 27 — is written when key store policy PKA key extensions checking detects the unauthorized

use of a key.
• Subtype 28 — is written for information about High Performance Encrypted Key.
• Subtype 29 — is written for each TKE workstation audit record received from a TKE workstation.
• Subtype 30 — is written for each time an archived or inactive key data set record is referenced.
• Subtype 31 — is written for cryptographic statistics data.
• Subtype 40 — is written for lifecycle events related to symmetric CCA tokens. This replaces subtype 9.
• Subtype 41 — is written for lifecycle events related to asymmetric CCA tokens. This replaces subtype

13.
• Subtype 42 — is written for lifecycle events related to PKCS#11 objects. This replaces subtype 23.
• Subtype 43 — is written when there is a configuration change for a regional cryptographic server.
• Subtype 44 — is written for usage events related to symmetric CCA tokens.
• Subtype 45 — is written for usage events related to asymmetric CCA tokens.
• Subtype 46 — is written for usage events related to PKCS#11 objects.
• Subtype 47 — is written for supported PKCS #11 usage events which do not involve an object.

Record Type 82

© Copyright IBM Corp. 2007, 2021 367

• Subtype 48 — is written for compliance warning events.

Macro to Symbolically Address Record Type 82: The SMF record mapping macro for ICSF type 82 record
is CSFSMF82.

The mapping macro, CSFSMF82, resides in SYS1.MODGEN.

Record environment
The following conditions exist for the generation of each of the subtypes of this record:
Macro

Subtype
Macro

1
SMFWTM (record exit: IEFU83)

3,4,5,6,7,8
SMFEWTM,BRANCH=YES,MODE=XMEM (record exit: IEFU85)

Record mapping
Two different record formats are produced by ICSF; one format that applies to subtypes smaller than 40
and another format that applies to subtypes 40 and higher.

For subtypes smaller than 40, the SMF record header is followed by the subtype-specific information and
optionally, the audit header and audit section.

Table 115. Format of an SMF Type 82 record for subtypes smaller than 40

SMF format

SMF record header

Subtype information

Audit section header (optional)

Audit section (optional)

For subtypes 40 and higher, the SMF record header is followed by an ICSF header, a main section that
contains the subtype-specific information, and optionally, the audit header and audit section.

Table 116. Format of an SMF Type 82 record for subtypes 40 and higher

SMF format

SMF record header

ICSF header

Main section with subtype information

Audit section header (optional)

Audit section (optional)

SMF header
Table 117. SMF record header

Offsets Name Length Format Description

0 0 SMF82LEN 2 binary Record length. This field and the next field (total of four bytes) form
the RDW (record descriptor word).

Record Type 82

368 z/OS: z/OS ICSF System Programmer's Guide

Table 117. SMF record header (continued)

Offsets Name Length Format Description

2 2 SMF82SEG 2 binary Segment descriptor (see record length field).

4 4 SMF82FLG 1 binary System indicator:

Bit
Meaning When Set

0-2
Reserved

3-6
Version indicators

7
Reserved.

5 5 SMF82RTY 1 binary Record type 82 (X'52').

6 6 SMF82TME 4 binary Time since midnight, in hundredths of a second, that the record
was moved into the SMF buffer.

10 A SMF82DTE 4 packed Date when the record was moved into the SMF buffer, in the form
0cyydddF.

14 E SMF82SID 4 EBCDIC System identification (from the SID parameter).

18 12 SMF82SSI 4 EBCDIC Subsystem identification.

22 16 SMF82STY 2 binary Record subtype.

ICSF header (for all subtypes 40 or greater)
Table 118. ICSF header (for all subtypes 40 or greater)

Offsets Name Length Format Description

Dec Hex

0 0 SMF82IHDR_VER 1 binary Version number of this record (X'01').

Incremented if a change is made to the record that is incompatible
with the prior version.

1 1 1 Reserved.

2 2 SMF82IHDR_LEN 2 binary Length of this header.

4 4 4 Reserved.

8 8 SMF82IHDR_MAIN_OFF 2 binary Offset from SMF82IHDR to main section.

10 A SMF82IHDR_MAIN_LEN 2 binary Length of main section.

12 C SMF82IHDR_AUD_OFF 2 binary Offset from SMF82IHDR to audit section. If there is no audit section,
this field is zero.

14 E SMF82IHDR_AUD_LEN 2 binary Length of audit section.

16 10 SMF82IHDR_END 0 End of ICSF header.

Main section (subtype information)
The data contained in the main section is specific to each subtype. The content of each subtype is
described in later sections of this document.

Audit header and audit section
Provides optional server user or end user audit information. When auditing information is supplied, there
may be a server user section only, an end user section only, or both a server user and end user section.
The SMF82AUD_HDR_NUM_SECTIONS field of the Audit Header indicates how many sections are present

Record Type 82

Appendix B. ICSF SMF records 369

and the SMF82AUD_SECTION_TYPE field in the section indicates the type of section. If both a server user
section and an end user section are present, they can appear in either order.

Table 119. SMF type 82 server user or end user audit section

Offsets Name Length Format Description

0 0 SMF82AUD_SECTION_TYPE 4 EBCDIC Type of the section that follows.
Either:

• ′SERV′ (for server user)
• ′USER′ (for end user)

4 4 SMF82AUD_SECTION_NUM_FLDS 2 Binary Number of triples in this section

6 6 SMF82AUD_SECTION_TOTAL_LEN 2 Binary Overall length of this section, including
this header

8 8 Tag-Length-Value (TLV) triplets start here and are defined in Table 121 on page 370. These repeat as many times as the
SMF82AUD_SECTION_NUM_FLDS field indicates.

Table 120. Audit header

Offsets Name Length Format Description

0 SMF82AUD_HDR_EYE 4 EBCDIC Eyecatcher 'AUDT'.

4 SMF82AUD_HDR_VER 2 EBCDIC Version. Currently '01'.

6 SMF82AUD_HDR_LEN 2 Binary Length of this header.

8 SMF82AUD_HDR_NUM_SECTIONS 4 Binary Number of audit sections
following this header.

12 SMF82AUD_HDR_TOTAL_LEN 4 Binary Length of all audit sections plus
this header.

Each Tag-Length-Value (TLV) triplet is a structure that is called SMF82AUD_TRIPLET and is defined as
follows. The values for the tags and the format and maximum length of the data are defined in Table 122
on page 370.

Table 121. Tag-Length-Value (TLV) triplet structure (SMF82AUD_TRIPLET)

Offsets Name Length Format Description

0 0 SMF82AUD_TRIPL_TAG 2 Binary Tag of the information in this TLV

2 2 SMF82AUD_TRIPL_LENGTH 2 Binary Length of this TLV including these first two fixed fields

4 4 SMF82AUD_TRIPL_DATA * Varies Data for this TLV

The tag values and their corresponding information are described in the following table. The tag value is
defined in the constant SMF82AUD_TAG_xxx and the maximum length in SMF82AUD_MAXLEN_xxx. For
example, the tag for X500_IDN is SMF82AUD_TAG_X500_IDN and maximum length of the associated
data is SMF82AUD_MAXLEN_X500_IDN.

Table 122. TLV triplet tag values

Tag Value Name Length Format Description

1 1 X500_IDN 0-255 EBCDIC X.500 Certificate Issuer’s Distinguished Name (ACEEX5PR->IDN)

2 2 X500_SDN 0-255 EBCDIC X.500 Certificate Subject’s Distinguished Name (ACEEX5PR-
>SDN)

10 A IDID_USRI 1-246 UTF-8 X.500 Distinguished Name of distributed client end user
(ACEEIDID-> IDID1UDN)

Record Type 82

370 z/OS: z/OS ICSF System Programmer's Guide

Table 122. TLV triplet tag values (continued)

Tag Value Name Length Format Description

11 B IDID_USRF 1 Binary Format of IDID_USRI (ACEEIDID->IDID1NMF)

0
Undetermined

1
Straight string

2
X.500 format

12 C IDID_REG 1-255 UTF-8 Name of the registry that authenticated the user (ACEEIDID-
>IDID1RN)

14 E USRI 8 EBCDIC RACF user ID (ACEEUSRI)

15 F GRPN 8 EBCDIC Connect group (ACEEGRPN)

16 10 TRM_USER 8 EBCDIC Terminal ID (ACEETRM)

17 11 JOB_JBN 8 EBCDIC Job name (JMRJOB)

18 12 JOB_RST 4 Binary Job entry time (JMRENTRY) in hundredths of a second that the
reader recognized the JOB statement for this job. This field can be
zero.

26 1A JOB_RSD 4 Binary Job entry date (JMREDATE) that the reader recognized the JOB
statement for this job in the form 0CYYDDDF. This field can be
zero.

34 22 JOB_UID 8 Binary User-defined identification field (JMRUSEID)

42 2A SEC 8 EBCDIC Security label (TOKSCL)

Tag-Length-Value (TLV) triplets
Some subtypes' main section consists of Tag-Length-Value (TLV) triplets. Tag-Length-Value triplets are in
the following format with a total length of SMF82IHDR_MAIN_LEN:

Table 123. Tag-Length-Value triplets

Offsets Name Length Format Description

Dec Hex

0 0 SMF82_TRIPL_TAG 2 binary The tag identifying the type of data that this triplet contains.

2 2 SMF82_TRIPL_LEN 2 binary Length of this triplet including the tag and the length fields.

4 4 SMF82_TRIPL_VAL The value for this triplet.

Service names used in SMF records
Appendix G, “Resource names for CCA and ICSF entry points,” on page 439 contains a list of service
names used in SMF records.

Subtype 1

Record Type 82

Appendix B. ICSF SMF records 371

Initialization/Options Refresh section
Table 124. Subtype 1 Initialization/Options Refresh

Offsets Name Length Format Description

0 0 SMF82VES 4 binary Cryptographic communication vector table extension (CCVE) status
bits

Bit
Meaning When Set

0
Special security mode allowed

1
Reserved

2
RNG Cache enabled

3-5
Reserved

6
RACF checking for authorized callers

7-14
Reserved

15
Reserved

16
Default wrapping for internal tokens is the enhanced method

17
Default wrapping for external tokens is the enhanced method

18
Key archive reference message

19-31
Reserved

4 4 SMF82VTS 1 binary Cryptographic communication vector table (CCVT) status bits

Bit
Meaning When Set

0-3
Reserved

4
Compatible with CUSP and PCF

5-7
Reserved.

5 5 SMF82IDO 1 binary Current crypto domain index.

6 6 SMF_INIT_CSFPRM 1 binary The DDNAME of the member that contains the installation options
data set. ICSF internally allocates CSFPARM2 DD based on
CSFPARM DD with the member name removed.

0
Release prior to HCR77D0.

1
CSFPARM2 DD (CSFPARM DD).

2
IEFPARM DD (Parmlib concatenation).

12 C SMF82CKD 44 EBCDIC Name of the cryptographic key data set (CKDS) that was read into
storage.

56 38 SMF82IML 4 binary Maximum length for data.

60 3C SMF82USR 8 EBCDIC USERPARM specifies installation use in the installation options
data set.

68 44 SMF82PKD 44 EBCDIC PKDS name.

Record Type 82

372 z/OS: z/OS ICSF System Programmer's Guide

Table 124. Subtype 1 Initialization/Options Refresh (continued)

Offsets Name Length Format Description

112 70 SMF82TKS 44 EBCDIC TKDS name.

Subtype 7

Operational key load section
Note: The number of hexadecimal digits of the key check value recorded in the field SMF82KV is
determined by the value of the MASTERKCVLEN parameter in installation options data set. The SMF82KV
field is padded with zeros when the number of digits is less than the length of the field.

Table 125. Subtype 7 operational key entry

Offsets Name Length Format Description

0 0 SMF82KPB 3 binary Key part (KPART) bits

Bit
Meaning When Set

0
Key part verification pattern valid.

1
Coprocessor is a PCIXCC. (This has been deprecated; see
SMF82KAP.)

2
Coprocessor is a CEX2C. (This has been deprecated; see
SMF82KAP.)

3
Coprocessor is a CEX3C. (This has been deprecated; see
SMF82KAP.)

4
Coprocessor is a CEX4C or higher. (This has been deprecated;
see SMF82KAP.)

5
The number of valid nibbles in field SFM82KV is controlled by
the MASTERKCVLEN parameter in the options data set. Field
SMF82KVL lists the number of valid nibbles recorded.

6-23
Reserved.

3 3 SMF82KVL 1 binary The number of valid nibbles in field SMF82KV.

4 4 SMF82KV 8 binary Key check value of the key. The key check value is left-justified and
padded with zeros.

12 C SMF82KKS 1 binary Coprocessor number.

13 D SMF82KDX 1 binary Current crypto domain index.

14 E SMF82KAP 1 binary Coprocessor type:

X'05'
Coprocessor is a PCIXCC.

X'07'
Coprocessor is a CEX2C.

X'09'
Coprocessor is a CEX3C.

X'0A'
Coprocessor is a CEX4C.

X'0B'
Coprocessor is a CEX5C.

X'0C'
Coprocessor is a CEX6C or higher.

Record Type 82

Appendix B. ICSF SMF records 373

Table 125. Subtype 7 operational key entry (continued)

Offsets Name Length Format Description

15 F 1 Reserved.

16 10 SMF82KCK 44 EBCDIC Name of the CKDS containing the key part.

60 3C SMF82KCL 72 EBCDIC CKDS entry being modified.

Subtype 8

Cryptographic key data set refresh section
Table 126. Subtype 8 Cryptographic key data set refresh

Offsets Name Length Format Description

0 0 SMF82ROC 44 EBCDIC Name of the CKDS being replaced.

44 2C SMF82RNC 44 EBCDIC Name of the CKDS to replace the current CKDS.

Subtype 9

Dynamic CKDS update
Table 127. Subtype 9 Dynamic CKDS update

Offsets Name Length Format Description

0 0 SMF82UCB 4 binary Update CKDS bits

Bit
Meaning When Set

0
CKDS record added.

1
CKDS record changed.

2
CKDS record deleted.

3
CKDS record archived.

4
CKDS record recalled.

5
CKDS record metadata changed.

6
CKDS record was changed by the CKDS KEYS utility.

7-31
Reserved.

Note: When bit 6 is off, the changes indicated by the other bits
were made by a callable service. When bit 6 is on, the changes
were made by the CKDS KEYS utility.

4 4 SMF82UCN 44 EBCDIC CKDS name.

48 30 SMF82UCL 72 EBCDIC CKDS entry being modified.

Subtype 13

Record Type 82

374 z/OS: z/OS ICSF System Programmer's Guide

Dynamic PKDS update
Table 128. Subtype 13 Dynamic PKDS update

Offsets Name Length Format Description

0 0 SMF_PKDS_BITS 4 binary Update PKDS bits

Bit
Meaning When Set

0
PKDS record added.

1
PKDS record changed.

2
PKDS record deleted.

3
PKDS record archived.

4
PKDS record recalled.

5
PKDS record metadata changed.

6
PKDS record was changed by the PKDS KEYS utility.

7-31
Reserved.

Note: When bit 6 is off, the changes indicated by the other bits
were made by a callable service. When bit 6 is on, the changes
were made by the PKDS KEYS utility.

4 4 SMF_PKDS_NAME 44 EBCDIC PKDS name.

48 30 SMF_PKDS_KEY_LABEL 72 EBCDIC PKDS entry being modified.

Subtype 14

Record Type 82

Appendix B. ICSF SMF records 375

Cryptographic coprocessor master key entry
Table 129. Subtype 14 Cryptographic coprocessor master key entry

Offsets Name Length Format Description

0 0 SMF82AAB 4 binary Flag bytes

Bit
Meaning When Set

0
DES NMK verification pattern is valid.

1
RSA NMK verification pattern is valid.

2
DES Key key part verification pattern is valid.

3
RSA Key Key part verification pattern is valid.

4
AES NMK verification pattern is valid.

5
AES key part verification pattern is valid.

6
ECC NMK verification pattern is valid.

7
ECC key part verification pattern is valid.

8
Always on.

9
Coprocessor is a PCIXCC. (This has been deprecated; see
SMF82AAP.)

10
Coprocessor is a CEX2C. (This has been deprecated; see
SMF82AAP.)

11
Coprocessor is a CEX3C. (This has been deprecated; see
SMF82AAP.)

12
Coprocessor is a CEX4C or higher. (This has been deprecated;
see SMF82AAP.)

13-24
Reserved.

25
DES NMK entered was 24-bytes long.

26-31
Reserved.

4 4 SMF82ANV 16 binary New master key register verification pattern.

20 14 SMF82AKV 16 binary Key part verification pattern.

36 24 SMF82APN 1 binary Cryptographic Processor number.

37 25 SMF82ASN 8 EBCDIC Cryptographic Processor serial number.

45 2D SMF82ADM 1 binary Cryptographic Coprocessor domain.

Record Type 82

376 z/OS: z/OS ICSF System Programmer's Guide

Table 129. Subtype 14 Cryptographic coprocessor master key entry (continued)

Offsets Name Length Format Description

46 2E SMF82AAP 1 binary Coprocessor type:

X'05'
Coprocessor is a PCIXCC.

X'07'
Coprocessor is a CEX2C.

X'09'
Coprocessor is a CEX3C.

X'0A'
Coprocessor is a CEX4C.

X'0B'
Coprocessor is a CEX5C.

X'0C'
Coprocessor is a CEX6C or higher.

47 2F 1 Reserved.

Subtype 15

PCI Cryptographic coprocessor retained key create/delete
Table 130. Subtype 15 PCI Cryptographic coprocessor retained key create/delete

Offsets Name Length Format Description

0 0 SMF82RKF 4 binary First flag byte

Bit
Meaning When Set

0
Retained key created.

1
Retained key deleted on coprocessor.

2
Retained key deleted from PKDS.

3-7
Reserved.

8
Always on.

9
Coprocessor is a PCIXCC. (This has been deprecated; see
SMF82RAP.)

10
Coprocessor is a CEX2C. (This has been deprecated; see
SMF82RAP.)

11
Coprocessor is a CEX3C. (This has been deprecated; see
SMF82RAP.)

12
Coprocessor is a CEX4C or higher. (This has been deprecated;
see SMF82RAP.)

13-31
Reserved.

4 4 SMF82RKN 64 EBCDIC Label of Retained private key.

68 44 SMF82RKP 1 binary Cryptographic Coprocessor number.

69 45 SMF82RKS 8 EBCDIC Cryptographic Coprocessor serial number.

77 4D SMF82RDM 1 binary Cryptographic Coprocessor domain.

Record Type 82

Appendix B. ICSF SMF records 377

Table 130. Subtype 15 PCI Cryptographic coprocessor retained key create/delete (continued)

Offsets Name Length Format Description

78 4E SMF82RAP 1 binary Coprocessor type:

X'05'
Coprocessor is a PCIXCC.

X'07'
Coprocessor is a CEX2C.

X'09'
Coprocessor is a CEX3C.

X'0A'
Coprocessor is a CEX4C.

X'0B'
Coprocessor is a CEX5C.

X'0C'
Coprocessor is a CEX6C or higher.

79 4F 1 Reserved.

Subtype 16

PCI Cryptographic coprocessor TKE
Table 131. Subtype 16 PCI Cryptographic Coprocessor TKE

Offsets Name Length Format Description

0 0 SMF82PFL 4 binary Flag bytes

Bit
Meaning When Set

0
Request command.

1
Reply response.

2-7
Reserved.

8
Always on.

9
Coprocessor is a PCIXCC. (This has been deprecated; see
SMF82PAP.)

10
Coprocessor is a CEX2C. (This has been deprecated; see
SMF82PAP.)

11
Coprocessor is a CEX3C. (This has been deprecated; see
SMF82PAP.)

12
Coprocessor is a CEX4 or higher. (This has been deprecated;
see SMF82PAP.)

13-29
Reserved

30
Coprocessor is configured for CCA.

31
Coprocessor is configured for PKCS #11.

4 4 SMF82PPN 1 binary Cryptographic Coprocessor number.

5 5 SMF82PSN 8 EBCDIC Cryptographic Coprocessor serial number.

13 D SMF82PDM 1 binary Cryptographic Coprocessor domain.

Record Type 82

378 z/OS: z/OS ICSF System Programmer's Guide

Table 131. Subtype 16 PCI Cryptographic Coprocessor TKE (continued)

Offsets Name Length Format Description

14 E SMF82PAP 1 binary Coprocessor type:

X'05'
Coprocessor is a PCIXCC.

X'07'
Coprocessor is a CEX2C.

X'09'
Coprocessor is a CEX3C.

X'0A'
Coprocessor is a CEX4C.

X'0B'
Coprocessor is a CEX5C.

X'0C'
Coprocessor is a CEX6C or higher.

Note: For CEX4 and higher, bits 30 and 31 at offset 0 indicate
whether the coprocessor is configured as a CCA or PKCS #11
coprocessor.

15 F 1 Reserved.

16 10 SMF82PBL 4 binary Parameter block length, "xxx".

20 14 SMF82PDL 4 binary Parameter data block length, "yyy".

24 18 SMF82PBK Parameter block of length "xxx" followed by parameter data block
of length "yyy".

Fixed length audit data – begins at offset 24 + xxx + yyy.

Table 132. Subtype 16 PCI Cryptographic Coprocessor TKE audit data

Offsets Name Length Format Description

0 0 SMF82P16 structure Fixed length audit data

0 0 SMF82PAL 4 binary Length of fixed audit data

4 4 SMF82PAD 4 binary PKCS #11 Admin request ID. All zeros if not applicable

8 8 SMF82PFI 2 binary Function ID

10 A SMF82PFR 4 binary Function Return code

0
Success

4
Not authorized

8
Error

14 E SMF82PDE 256 EBCDIC Function description

270 10E SMF82PUS 20 binary Transaction Sequence Number (TSN) for commands or, for CCA
coprocessor requests only, User ID Nonce (random number) for
queries. All blanks if not applicable

290 122 SMP82PTA 8 EBCDIC TKE Authority for CCA coprocessor requests. Blanks for PKCS #11
coprocessor requests

Subtype 18

Record Type 82

Appendix B. ICSF SMF records 379

Cryptographic processor configuration
Table 133. Subtype 18 Cryptographic Processor Configuration

Offsets Name Length Format Description

0 0 SMF82CGB 4 binary Flag bytes

Bit
Meaning When Set

0
A Cryptographic processor has been brought online.

1
A Cryptographic processor has been taken offline.

2
A Cryptographic processor has changed compliance mode.

3-7
Reserved.

8
Always on.

9
Coprocessor is a PCIXCC. (This has been deprecated; see
SMF82CAP.)

10
Coprocessor is a CEX2C. (This has been deprecated; see
SMF82CAP.)

11
Coprocessor is a CEX2A. (This has been deprecated; see
SMF82CAP.)

12
Coprocessor is a CEX3C. (This has been deprecated; see
SMF82CAP.)

13
Coprocessor is a CEX3A. (This has been deprecated; see
SMF82CAP.)

14
Coprocessor is a CEX4 or higher. (This has been deprecated;
see SMF82CAP.)

15-28
Reserved.

29
Configured as an accelerator

30
Configured as a CCA coprocessor

31
Configured as a PKCS #11 coprocessor

4 4 SMF82CGX 1 binary Cryptographic Coprocessor number.

5 5 SMF82CGS 8 EBCDIC Cryptographic Coprocessor serial number.

Record Type 82

380 z/OS: z/OS ICSF System Programmer's Guide

Table 133. Subtype 18 Cryptographic Processor Configuration (continued)

Offsets Name Length Format Description

13 D SMF82CAP 1 binary Coprocessor type:

X'04'
Coprocessor is a PCICA.

X'05'
Coprocessor is a PCIXCC.

X'06'
Coprocessor is a CEX2A.

X'07'
Coprocessor is a CEX2C.

X'08'
Coprocessor is a CEX3A.

X'09'
Coprocessor is a CEX3C.

X'0A'
Coprocessor is a CEX4.

X'0B'
Coprocessor is a CEX5.

X'0C'
Coprocessor is a CEX6 or higher.

Note: For CEX4 and higher, bits 29, 30, and 31 at offset 0 indicate
whether the coprocessor is configured as an accelerator, a CCA, or
a PKCS #11 coprocessor.

14 E 8 binary System Compliance Information.

Byte 0:

Bit
Meaning

0
Compliance mode is active.

1
Compliance migration mode is active.

2-7
Reserved.

Bytes 1-6: Reserved.

Byte 7:

Bit
Meaning

0-6
Reserved.

7
PCI-HSM 2016 compliance mode is active.

Note: These byte references only relate to this 8-byte structure.

Subtype 19

PCI X Cryptographic coprocessor timing
Table 134. Subtype 19 PCI X Cryptographic Coprocessor Timing

Offsets Name Length Format Description

0 0 SMF82XTN 8 EBCDIC Time just before the PCI X Cryptographic Coprocessor operation
begins.

8 8 SMF82XTD 8 EBCDIC Time just after PCI X Cryptographic Coprocessor operation ends.

Record Type 82

Appendix B. ICSF SMF records 381

Table 134. Subtype 19 PCI X Cryptographic Coprocessor Timing (continued)

Offsets Name Length Format Description

16 10 SMF82XTW 8 EBCDIC Time just after results have been communicated to caller address
space.

24 18 SMF82XTQ 4 binary Number of processes waiting to submit work to the same PCI X
Cryptographic Coprocessor and domain, using the same reference
number.

28 1C SMF82XTF 2 EBCDIC Function code of service.

30 1E SMF82XTX 1 binary PCI X Cryptographic Coprocessor number.

31 1F SMF82XTS 8 EBCDIC PCI X Cryptographic Coprocessor serial number.

39 27 SMF82XTM 1 binary PCI X Cryptographic Coprocessor domain.

40 28 SMF82XTR 1 binary PCI X Cryptographic Coprocessor reference number.

41 29 3 Reserved.

Subtype 20

Cryptographic processor processing times
Table 135. Subtype 20 Cryptographic Processor Processing Times

Offsets Name Length Format Description

0 0 SMF82TFL 4 binary Flag bytes

Bit
Meaning When Set

0
Processor is a PCIXCC or PCICA. (This has been deprecated;
see SMF82TPT.)

Note: The record is for a PCIXCC when bits 0 and 30 are on
and for a PCICA with bits 0 and 29 are on.

1
Coprocessor is a CEX2C. (This has been deprecated; see
SMF82TPT.)

2
Coprocessor is a CEX2A. (This has been deprecated; see
SMF82TPT.)

3
Coprocessor is a CEX3C. (This has been deprecated; see
SMF82TPT.)

4
Coprocessor is a CEX3A. (This has been deprecated; see
SMF82TPT.)

5
Coprocessor is a CEX4 or higher. (This has been deprecated;
see SMF82TPT.)

6
Regional cryptographic server.

7–28
Reserved.

29
Configured as an accelerator.

30
Configured as a CCA coprocessor.

31
Configured as a PKCS #11 coprocessor.

4 4 SMF82TNQ 8 binary Coprocessor time before NQAP.

Record Type 82

382 z/OS: z/OS ICSF System Programmer's Guide

Table 135. Subtype 20 Cryptographic Processor Processing Times (continued)

Offsets Name Length Format Description

12 C SMF82TDQ 8 binary Coprocessor time after DQAP.

20 14 SMF82TWT 8 binary Coprocessor time after WAIT.

28 1C SMF82TQU 4 binary Coprocessor queue length.

32 20 SMF82TSF 2 EBCDIC Coprocessor sub function code.

34 22 SMF82TIX 1 binary Coprocessor index.

35 23 SMF82TSN 8 EBCDIC Coprocessor serial number.

43 2B SMF82TDM 1 binary Domain.

44 2C SMF82TRN 1 binary Reference number.

45 2D SMF82TPT 1 binary Coprocessor type:

X'04'
Coprocessor is a PCICA.

X'05'
Coprocessor is a PCIXCC.

X'06'
Coprocessor is a CEX2A.

X'07'
Coprocessor is a CEX2C.

X'08'
Coprocessor is a CEX3A.

X'09'
Coprocessor is a CEX3C.

X'0A'
Coprocessor is a CEX4.

X'0B'
Coprocessor is a CEX5.

X'0C'
Coprocessor is a CEX6 or higher.

Note: For CEX4 and higher, bits 29, 30, and 31 at offset 0 indicate
whether the coprocessor is configured as an accelerator, a CCA, or
a PKCS #11 coprocessor.

46 2E 2 Reserved.

48 30 SMF_AP_TME_NQAPE 16 binary AP extended time before NQAP.

64 40 SMF_AP_TME_DQAPE 16 binary AP extended time after DQAP.

80 50 SMF_AP_TME_WAITE 16 binary AP extended time after WAIT.

Subtype 21

ICSF sysplex group change section
Table 136. Subtype 21 ICSF Sysplex Group Change

Offsets Name Length Format Description

0 0 SMF82SXG 8 EBCDIC Name of ICSF Sysplex group.

8 8 SMF82SXM 8 EBCDIC Name of sysplex member.

Record Type 82

Appendix B. ICSF SMF records 383

Table 136. Subtype 21 ICSF Sysplex Group Change (continued)

Offsets Name Length Format Description

16 F SMF82SXA 1 binary ICSF Sysplex member status flags

Bit
Meaning When Set

0
Member joined the ICSF sysplex group.

1
Member left the ICSF sysplex group.

2–7
Reserved.

17 11 SMF82SXR 1 binary ICSF Sysplex member conditions of status flags

Bit
Meaning When Set

0
Member joined or left the ICSF sysplex due to normal
initialization/termination processing

1
Member left the ICSF sysplex due to error

2–7
Reserved.

18 12 2 Reserved.

20 14 SMF82SXT 8 EBCDIC Time of ICSF sysplex join/leave index.

28 1C SMF82SXC 44 EBCDIC Name of active CKDS.

72 48 SMF_SYSPLEX_TIMEE 16 binary Extended time of ICSF sysplex join/leave index.

Subtype 22

Trusted block create callable services section
Table 137. Subtype 22 Trusted Block Create Callable Services

Offsets Name Length Format Description

0 0 SMF82TBF 4 binary Process Flag bytes

Bit
Meaning When Set

0
Created Inactive Trusted Block.

1
Activate an Inactive Block.

2
Trusted Block has Public Key.

3–31
Reserved.

4 4 SMF82TBS 2 binary ASID of caller.

6 6 SMF82TBN 64 EBCDIC Label of Input Trusted Block.

70 46 SMF82TBO 64 EBCDIC Label of Output Trusted Block.

134 86 SMF82TBX 64 EBCDIC Label of Transport Key.

Subtype 23

Record Type 82

384 z/OS: z/OS ICSF System Programmer's Guide

Token data set update
Table 138. Subtype 23 Token Data Set Update

Offsets Name Length Format Description

0 0 SMF82TKF 4 binary TKDS bits

Bit
Meaning When Set

0
TKDS record added.

1
TKDS record changed.

2
TKDS record deleted.

3
TKDS record archived.

4
TKDS record recalled.

5
TKDS record metadata changed.

6
TKDS record was changed by the PKCS11 Token utility.

7-31
Reserved.

Note: When bit 6 is off, the changes indicated by the other bits
were made by a callable service. When bit 6 is on, the changes
were made by the PKCS11 Token utility.

4 4 SMF82TKN 44 EBCDIC TKDS name.

48 30 SMF82TKH 44 EBCDIC TKDS handle being processed.

Subtype 24

Duplicate tokens found
Table 139. Subtype 24 Duplicate Tokens Found

Offsets Name Length Format Description

0 0 SMF82DCNTSTRT 4 binary Start of duplicate labels.

4 4 SMF82DCNTEND 4 binary End of duplicate labels.

8 8 SMF82DCNT 4 binary Number of duplicate labels.

12 C SMF82DRSVD 4 binary Reserved.

16 10 SMF82DNAM 44 binary Name of key data set.

The following field is repeated count (SMF82DCNT) number of times.

60 3C SMF82_Label 72 * SMF82DCNT EBCDIC Key labels.

Subtype 25

Key store policy for key token authorization checking
The key store policy must be activated before this SMF record subtype is logged. The subtype is logged
when the callable service request fails the Key Token Authorization Checking key store policy check.

Record Type 82

Appendix B. ICSF SMF records 385

Table 140. Subtype 25 Key Store Policy Key Token Authorization Checking

Offsets Name Length Format Description

0 0 SMF82KDS 44 EBCDIC Data set name.

44 2C SMF82KLF 4 binary Key store policy flags:

Bit
Meaning When Set

0
Warning.

1
List is incomplete.

2
List is from CKDS.

3
List is from PKDS.

4
Authorization failures.

5
Archived failures.

6
Preactive failures.

7
Deactivated failures.

8-31
Reserved.

48 30 SMF82KLC 4 binary Number of key labels following.

The following field is repeated count (SMF82KLC) number of times.

52 34 SMF82DKL 72 EBCDIC Unauthorized duplicate key label and key type.

Subtype 26

Public key data set refresh
Table 141. Subtype 26 Public Key Data Set Refresh

Offsets Name Length Format Description

0 0 SMF82PREF_FLAG 4 binary Flags:

Bit
Meaning When Set

0
Data space was refreshed.

1-31
Reserved.

4 4 SMF82_PREF_OLDDS 44 EBCDIC Old PKDS Name.

48 30 SMF82_PREF_NEWDS 44 EBCDIC New PKDS Name.

Subtype 27

Record Type 82

386 z/OS: z/OS ICSF System Programmer's Guide

PKA key management extensions
Table 142. Subtype 27 PKA Key Management Extensions

Offsets Name Length Format Description

0 0 SMF82PKE_FLAGS 4 binary PKA Key Management Extension flags:

Bit
Meaning When Set

0
PKA token may not be used for requested
function.

1
SYM token may not be exported by the
provided PKA token.

2
PKA label list is incomplete.

3
SYM label list is incomplete.

4
Input is an X.509 certificate.

24
Trusted certificate repository has changed.

25
PKA Key Management Extensions in
WARNONLY mode.

26
An error was detected during processing.

27
Trusted cert repository was empty.

28
An error was detected while extracting
APPLDATA.

29
The repository was not found.

30
One or more certs could not be parsed.

Bits 0-4 are set during callable services.

Bits 24-30 are set during repository parsing.

Bits 5-23 and 31 are reserved.

4 4 SMF82PKE_FUNCTION 8 EBCDIC Name of the service that issued this SMF record.
The name is in the form CSFzzz.

12 C SMF82PKE_APPLDATALEN 1 binary Length of the enablement profile APPLDATA or
current repository name.

13 D SMF82PKE_APPLDATA 247 EBCDIC Enablement profile APPLDATA or current repository
name.

260 104 SMF82PKE_FUNCSPEC 0 binary Function-specific section of the record.

260 104 SMF82PKE_APPLDATA_PARSING 0 binary APPLDATA parsing results section.

260 104 SMF82PKE_SAF_RC 2 binary SAF_RC or 'FFFF'X.

262 106 SMF82PKE_SERV_RC 2 binary RACF RC or ICSF RC.

264 108 SMF82PKE_SERV_RS 4 binary RACF RS or ICSF RS.

260 104 SMF82PKE_SERVICE_SECTION 0 binary Callable services section.

260 104 SMF82PKE_PKA_REC_CNT 4 binary Number of PKA labels present in this record. When
the input key to the service is an X.509 certificate,
there are no PKA labels present.

264 108 SMF82PKE_SYM_REC_CNT 4 binary Number of SYM labels present in this record.

Record Type 82

Appendix B. ICSF SMF records 387

Table 142. Subtype 27 PKA Key Management Extensions (continued)

Offsets Name Length Format Description

The following is repeated SMF82PKE_PKA_REC_CNT number of times.

268 10C SMF82PKE_PKA_LABELS 64 EBCDIC PKA key label.

The following is repeated SMF82PKE_SYM_REC_CNT number of times.

268+
zzz

10C+
zzz

SMF82PKE_SYM_LABELS 72 EBCDIC SYM key label.

Subtype 28

High performance encrypted key
Table 143. Subtype 28 High Performance Encrypted Key

Offsets Name Length Format Description

0 0 SMF82HPSK_FLAGS 4 binary High Performance Encrypted Key flags:

Bit
Meaning When Set

0
Rewrapping operation is not permitted for this
symmetric key.

1
Rewrapping operation was permitted for this
symmetric key.

2
The list of labels is incomplete.

3
The key identifier was supplied as a key token, not as a
label in the CKDS.

Bits 4–31 are reserved.

4 4 SMF82HPSK_FUNCTION 8 EBCDIC Name of the service that issued this SMF record. The name
is in the form of CSFzzzz.

12 C SMF82HPSK_SYM_LABEL_CNT 4 binary Number of labels present in this record.

The following is repeated SMF82HPSK_SYM_LABEL_CNT number of times.

16 10 SMF82HPSK_SYM_LABELS 72 or 64 EBCDIC SYM key label and type or ASYM label.

Subtype 29

TKE workstation audit record
Table 144. Subtype 29 TKE Workstation Audit Record

Offsets Name Length Format Description

0 0 SMF82TKEAR_FLAGS 4 binary Flags -- Reserved.

4 4 SMF82TKEAR_NAMELEN 2 binary TKE workstation name length (nlen).

6 6 SMF82TKEAR_RCDLEN 2 binary TKE audit record data length (nlen).

8 8 SMF82TKEAR_NAME nlen EBCDIC TKE workstation name.

8 +
nlen

8 +
nlen

nlen TKE audit record data.

Record Type 82

388 z/OS: z/OS ICSF System Programmer's Guide

Subtype 30

Key store policy archived and inactive KDS records
Table 145. Subtype 30 Archived and inactive KDS records

Offsets Name Length Format Description

0 0 SMF_ARCH_FLAGS 4 binary Flag bytes

Bit
Meaning When Set

0
CKDS

1
PKDS

2
TKDS

3-7
Reserved.

8
Record that is archived was referenced by service. By policy,
service call failed.

9
Record that is archived was referenced by service. By policy,
service call succeeded

10
Record that is pre-active was referenced by service. Service
call failed.

11
Record that is inactive was referenced by service. Service call
failed.

12-31
Reserved

4 4 SMF_ARCH_DSNAME 44 EBCDIC Key data set name.

48 30 SMF_ARCH_KEY_LABEL 72 EBCDIC Key data set entry.

Subtype 31

Cryptographic usage statistics
ICSF supports a cryptographic usage statistics section containing a header and a variable number of
triplets.

Note: A single SMF record cannot exceed 32K bytes.

Table 146. Subtype 31 Cryptographic usage statistics

Offsets
(Dec)

Name Length Format Description

0 SMF82STAT_VER 1 binary Version number.

1 SMF82STAT_DOMAIN 1 binary ICSF domain index.

2 SMF82STAT_LEN 2 binary Length of this header.

4 SMF82STAT_TRIPL_OFF 2 binary Offset from SMF82STAT into
triplet section.

6 SMF82STAT_TRIPL_LEN 2 binary Length of triplet section.

Record Type 82

Appendix B. ICSF SMF records 389

Table 146. Subtype 31 Cryptographic usage statistics (continued)

Offsets
(Dec)

Name Length Format Description

8 SMF82STAT_D_INTVAL_STARTE 16 binary Start time (TOD clock) of the
SMF interval in STCKE format.

24 SMF82STAT_D_INTVAL_ENDE 16 binary End time (TOD clock) of the
SMF interval in STCKE format.

40 SMF82STAT_D_USERID_AS 8 EBCDIC The HOME address space user
ID.

48 SMF82STAT_D_USERID_TK 8 EBCDIC The task level user ID (if
present).

56 SMF82STAT_D_JOBID 8 EBCDIC The job ID for the HOME
address space.

64 SMF82STAT_D_JOBNAME 8 EBCDIC The job name for the HOME
address space.

72 SMF82STAT_D_JOBNAME2 8 EBCDIC The job name of the
SECONDARY address space
(ICSF caller).

80 SMF82STAT_D_PLEXNAME 8 EBCDIC The sysplex member name.

Each Tag-Length-Value (TLV) triplet is a structure called SMF82_TRIPL. The values for the tags, the
format, and the maximum length of the data are defined in Table 147 on page 390.

Table 147. Subtype 31 SMF82_TRIPL

Offsets
(Dec)

Name Length Format Description

0 SMF82_TRIPL_TAG 2 binary Tag of the data.

2 SMF82_TRIPL_LENGTH 2 binary Length of the tag, length, and data
fields.

4 SMF82_TRIPL_DATA * varies Value of the data.

The tag values and their corresponding information are described in Table 148 on page 390.

Table 148. Subtype 31 tag values

Tag ID (2
bytes)

Tag name Length (2
bytes)

Format Description

Cryptographic engine (ENG) usage statistics

X'0201' SMF82STAT_ENG_CARD 20 structure Crypto card usage count.

• 4-byte EBCDIC identifier (for
example, 5C01).

• 8-byte EBCDIC serial number.
• 4-byte binary card usage count.

Record Type 82

390 z/OS: z/OS ICSF System Programmer's Guide

Table 148. Subtype 31 tag values (continued)

Tag ID (2
bytes)

Tag name Length (2
bytes)

Format Description

X'0202' SMF82STAT_ENG_RCS 20 structure Regional cryptographic server (RCS)
usage count.

• 4-byte EBCDIC identifier (for
example, 2R01).

• 8-byte EBCDIC serial number.
• 4-byte binary RCS usage count.

X'0203' SMF82STAT_ENG_CPACF 8 binary CPACF usage count.

X'0204' SMF82STAT_ENG_SOFT
W

8 binary Crypto software usage count.

Cryptographic service (SRV) usage statistics

X'0205' SMF82STAT_SRV 16 structure ICSF callable service usage count.

• 8-byte EBCDIC service name.
• 4-byte binary service usage count.

See Appendix G, “Resource names for
CCA and ICSF entry points,” on page
439 for service names.

X'0206' SMF82STAT_SRVUDX 16 structure UDX service usage count.

• 8-byte EBCDIC UDX service name.
• 4-byte binary UDX service usage

count.

Cryptographic algorithm (ALG) usage statistics

X'0207' SMF82STAT_ALG 16 structure Crypto algorithm usage count.

• 8-byte EBCDIC algorithm name.
• 4-byte binary algorithm usage count.

See Table 149 on page 391 for
algorithm names.

Table 149. SMF82STAT_ALG algorithm names

Algorithm name Description

AES128 128-bit AES algorithm.

AES192 192-bit AES algorithm.

AES256 256-bit AES algorithm.

Blowfish Blowfish algorithm (PKCS #11 only).

DES112 112-bit DES algorithm.

DES168 168-bit DES algorithm.

DES56 56-bit DES algorithm.

DH DH algorithm (PKCS #11 only).

Record Type 82

Appendix B. ICSF SMF records 391

Table 149. SMF82STAT_ALG algorithm names (continued)

Algorithm name Description

DSA DSA algorithm (PKCS #11 only).

ECCBP160 160-bit ECC algorithm.

ECCBP192 192-bit ECC algorithm.

ECCBP224 224-bit ECC algorithm.

ECCBP256 256-bit ECC algorithm.

ECCBP320 320-bit ECC algorithm.

ECCBP384 384-bit ECC algorithm.

ECCBP512 512-bit ECC algorithm.

ECCP192 192-bit ECC algorithm.

ECCP224 224-bit ECC algorithm.

ECCP256 256-bit ECC algorithm.

ECCP384 384-bit ECC algorithm.

ECCP521 521-bit ECC algorithm.

ED25519 ECC curve25519 signature algorithm.

ED448 ECC curve448 signature algorithm.

GenSec Generic Secret algorithm (PKCS #11 only).

HMAC HMAC algorithm (CCA only).

MD2 MD2 hashing algorithm (PKCS #11 only).

MD5 MD5 hashing algorithm.

PRNG Pseudo-random number generator

PRNGFIPS Pseudo-random number generator consistent with NIST SP800-90A
PRNGFIPS (PKCS #11 Only).

RC4 RC4 algorithm (PKCS #11 only).

RPMD160 RPMD-160 hashing algorithm.

RSA1024 RSA algorithm with a key bit length from 1024 to 2047 bits.

RSA2048 RSA algorithm with a key bit length from 2048 to 4095 bits.

RSA4096 RSA algorithm with a key bit length of 4096 bits or greater.

RSA512 RSA algorithm with a key bit length from 512 to 1023 bits.

SHA1 SHA-1 hashing algorithm.

SHA224 SHA-224 hashing algorithm.

SHA256 SHA-256 hashing algorithm.

SHA3-224 SHA3-224 hashing algorithm

SHA3-256 SHA3-256 hashing algorithm

SHA3-384 SHA3-384 hashing algorithm

SHA3-512 SHA3-512 hashing algorithm

Record Type 82

392 z/OS: z/OS ICSF System Programmer's Guide

Table 149. SMF82STAT_ALG algorithm names (continued)

Algorithm name Description

SHA384 SHA-384 hashing algorithm.

SHA512 SHA-512 hashing algorithm.

SHAKE128 SHAKE128 hashing algorithm

SHAKE256 SHAKE256 hashing algorithm

SM2 SM2 algorithm (RCS only).

SM3 SM3 algorithm (RCS only).

SM4 SM4 algorithm (RCS only).

SM4-I2PD SM4 hashing algorithm (PKCS #11 only).

SM4-ZERO SM4 hashing algorithm (PKCS #11 only).

TLS-PRF TLS Pseudo-Random Function derivation protocol (PKCS #11 Only).

X25519 ECC curve25519 key exchange algorithm.

X448 ECC curve448 key exchange algorithm.

See Appendix G, “Resource names for CCA and ICSF entry points,” on page 439 for a list of possible
values for the SMF82STAT_SRV tag.

Subtype 40

CCA symmetric key lifecycle event
The main section for this subtype consists of a number of Tag-Length-Value (TLV) triplets. The following
triplets may be contained in the record. The specific set of triplets is dependent on the type of event and
the information that is available. This replaces subtype 9.

Record Type 82

Appendix B. ICSF SMF records 393

Table 150. Subtype 40 CCA symmetric key lifecycle event

Tag value Name Length Format Description

Dec Hex

256 100 SMF82_TAG_KEY_EVENT 1 binary Key event. This field always occurs first in the record.

X'10'
Key token added to KDS.

X'11'
Key token updated in KDS.

X'12'
Key token deleted from KDS.

X'13'
Key token archived.

X'14'
Key token restored.

X'15'
Key token metadata changed.

X'17'
Key token pre-activated.

X'18'
Key token activated.

X'19'
Key token deactivated.

X'1B'
Key token exported.

X'20'
Key token generated.

X'21'
Key token imported.

Note:

1. When a key is exported, the key token that gets audited is the
input or source token.

2. When a key is imported, the key token that gets audited is the
output or target token.

257 101 SMF82_TAG_KDS_LABEL 72 EBCDIC The label in the KDS.

258 102 SMF82_TAG_KDS_DSNAME 44 EBCDIC The dataset name of the KDS associated with the event. If there is
no associated KDS (for example, the event only involves a token),
this field is not present.

259 103 SMF82_TAG_KEY_NAME 64 EBCDIC The key name from the token. Applies to variable-length CCA
tokens only.

Record Type 82

394 z/OS: z/OS ICSF System Programmer's Guide

Table 150. Subtype 40 CCA symmetric key lifecycle event (continued)

Tag value Name Length Format Description

Dec Hex

261 105 SMF82_TAG_KEY_FPRINT 1 - 64 binary One or more key fingerprints.

The first byte is the number (n) of fingerprints present for the key.
Following that are n type-length-value triplets. Within each of these
triplets is a 1-byte fingerprint type, followed by a 1-byte length for
the triplet, followed by the fingerprint.

Fingerprint types:

X'01'
Ciphertext obtained from encrypting a data block filled with
binary zeros in ECB mode.

X'03'
SHA-256 algorithm. See Appendix E in z/OS Cryptographic
Services ICSF Application Programmer's Guide for more
information.

X'04'
SHAVP1 algorithm. See Appendix E in z/OS Cryptographic
Services ICSF Application Programmer's Guide for more
information.

X'05'
CMACZERO (only present for compliant-tagged AES keys). See
the Key Test2 (CSNBKYT2/CSNEKYT2) callable service in z/OS
Cryptographic Services ICSF Application Programmer's Guide
for more information.

For example, X'010105010203' indicates that there is one
fingerprint value (01) which is the ciphertext obtained from using
the key to encrypt a data block of binary zeros in ECB mode (01).
The fingerprint is 3 bytes in length (05 – 2) and the value is
X'010203'.

Note: If the event pertains to a record in the CKDS, the key
fingerprint is only present when using a KDSR-format dataset.

262 106 SMF82_TAG_SERVICE 8 EBCDIC The service associated with the event.

264 108 SMF82_TAG_TOK_FMT 1 binary The format of the token.

X'01'
Fixed length CCA token.

X'02'
Variable length CCA token.

X'03'
TR-31 key block.

X'04'
RKX token.

Note:

1. When format is RKX token, no other key or token related fields
are present.

2. When format is TR-31 key block, the only other key or token
related field that may be present is the key fingerprint.

265 109 SMF82_TAG_KEY_SEC 1 binary Key security.

X'01'
No key present.

X'02'
Clear key.

X'03'
Key encrypted under master key.

X'04'
Key encrypted under key encrypting key.

Record Type 82

Appendix B. ICSF SMF records 395

Table 150. Subtype 40 CCA symmetric key lifecycle event (continued)

Tag value Name Length Format Description

Dec Hex

266 10A SMF82_TAG_KEY_ALG 1 binary Key algorithm.

X'02'
DES.

X'03'
AES.

X'04'
HMAC.

267 10B SMF82_TAG_KEY_TYPE 2 binary Key type.

The key type from the token. Applies to variable-length CCA tokens
only. See “Variable-length symmetric key token” in z/OS
Cryptographic Services ICSF Application Programmer's Guide for
the list of key types.

268 10C SMF82_TAG_KEY_CV 8 binary Key control vector.

The first eight bytes of the control vector from the token. Applies to
fixed-length DES CCA tokens only.

See Appendix C in z/OS Cryptographic Services ICSF Application
Programmer's Guide for information on how to interpret the control
vector.

269 10D SMF82_TAG_KEY_USAGE_CKDS 3 - 33 binary Key usage fields.

Consists of a 1 byte count followed by one or more 2-byte key
usage fields. Applies to variable-length CCA tokens only.

See Appendix B in z/OS Cryptographic Services ICSF Application
Programmer's Guide for the list of key usage values for variable
length tokens.

270 10E SMF82_TAG_KEY_LEN 2 binary The length of the key (in bits). Applies to fixed-length CCA tokens
only.

271 10F SMF82_TAG_KEY_CP 16 EBCDIC Key crypto period. The start date followed by the end date for the
record in YYYYMMDD format (therefore, YYYYMMDDYYYYMMDD).
If a date is not set, that portion of the key crypto period will be
blanks. Applies to records in the KDS which have at least one date
set.

280 118 SMF82_TAG_KEY_TIV variable binary A key token identification value. A string of bytes present in the key
token. Can be used to help uniquely identify a key token.

Notes:

1. Only present when TOK_FMT is a fixed-length CCA token.
2. This is the 4-byte token validation value. For more information,

see Appendix B. Key Token Formats (Sections “AES Key Token
Formats” and “DES Key Token Formats”) in z/OS Cryptographic
Services ICSF Application Programmer's Guide.

281 119 SMF82_TAG_KEY_COMP_TAG 0 N/A The key is compliant-tagged.

Note: May only be present when KEY_ALG is DES and TOK_FMT is a
fixed-length CCA token or when KEY_ALG is AES and TOK_FMT is a
variable-length CCA token. For DES key tokens, only when the key
derivation function (KDF) is X'02' or greater is it considered
compliant-tagged.

Record Type 82

396 z/OS: z/OS ICSF System Programmer's Guide

Subtype 41

CCA asymmetric key lifecycle event
The main section for this subtype consists of a number of Tag-Length-Value (TLV) triplets. The following
triplets may be contained in the record. The specific set of triplets is dependent on the type of event and
the information that is available. This replaces subtype 13.

Table 151. Subtype 41 CCA asymmetric key lifecycle event

Tag value Name Length Format Description

Dec Hex

256 100 SMF82_TAG_KEY_EVENT 1 binary Key event. This field always occurs first in the record.

X'10'
Key token added to KDS.

X'11'
Key token updated in KDS.

X'12'
Key token deleted from KDS.

X'13'
Key token archived.

X'14'
Key token restored.

X'15'
Key token metadata changed.

X'17'
Key token pre-activated.

X'18'
Key token activated.

X'19'
Key token deactivated.

X'1B'
Key token exported.

X'20'
Key token generated.

X'21'
Key token imported.

Note:

1. When a key is exported, the key token that gets audited is the
input or source token.

2. When a key is imported, the key token that gets audited is the
output or target token.

257 101 SMF82_TAG_KDS_LABEL 72 EBCDIC The 64-byte KDS label left-justified and padded on the right with
blanks.

258 102 SMF82_TAG_KDS_DSNAME 44 EBCDIC The dataset name of the KDS associated with the event. If there is
no associated KDS (for example, the event only involves a token),
this field is not present.

259 103 SMF82_TAG_KEY_NAME 64 EBCDIC The key name from the token.

Record Type 82

Appendix B. ICSF SMF records 397

Table 151. Subtype 41 CCA asymmetric key lifecycle event (continued)

Tag value Name Length Format Description

Dec Hex

260 104 SMF82_TAG_OBJ_TYPE 1 binary Object type.

X'02'
Public key.

X'05'
Certificate.

X'0B'
Public/Private key pair.

X'0D'
Trusted block.

Notes:

• When the object type is trusted block, no other key or token
related information is present.

• When the object type is certificate, the only other key related
information present is the key fingerprint (KEY_FPRINT).

261 105 SMF82_TAG_KEY_FPRINT 1 - 64 binary One or more key fingerprints.

The first byte is the number (n) of fingerprints present for the key.
Following that are n type-length-value triplets. Within each of these
triplets is a 1-byte fingerprint type, followed by a 1-byte length for
the triplet, followed by the fingerprint.

Fingerprint types:

X'02'
SHA-1 hash of the public key.

For example, X'010205010203' indicates that there is one
fingerprint value (01) which is the SHA-1 hash of the public key
(02). The fingerprint is 3 bytes in length (05 – 2) and the value is
X'010203'.

Note: If the event pertains to a record in the PKDS, the key
fingerprint is only present when using a KDSR-format dataset.

262 106 SMF82_TAG_SERVICE 8 EBCDIC The service associated with the event.

265 109 SMF82_TAG_KEY_SEC 1 binary Key security.

X'01'
No key present.

X'02'
Clear key.

X'03'
Key encrypted under master key.

X'04'
Key encrypted under key encrypting key.

266 10A SMF82_TAG_KEY_ALG 1 binary Key algorithm.

X'07'
RSA.

X'08'
DSA.

X'09'
ECC.

Note: When the algorithm is DSA, the only other key or token
information that is present is the object type.

270 10E SMF82_TAG_KEY_LEN 2 binary The length of the key (in bits). For RSA, this is the length of the
modulus. For ECC, this is the length of the private value.

Record Type 82

398 z/OS: z/OS ICSF System Programmer's Guide

Table 151. Subtype 41 CCA asymmetric key lifecycle event (continued)

Tag value Name Length Format Description

Dec Hex

271 10F SMF82_TAG_KEY_CP 16 EBCDIC Key crypto period. The start date followed by the end date for the
record in YYYYMMDD format (therefore, YYYYMMDDYYYYMMDD).
If a date is not set, that portion of the key crypto period will be
blanks. Applies to records in the KDS which have at least one date
set.

272 110 SMF82_TAG_KEY_USAGE_PKDS 4 binary Key usage for private keys.

Bit
Meaning when set

0
Undefined.

1
Key management usage permitted.

2
Signature usage permitted.

3
Key translation permitted.

4
Key agreement usage permitted.

5
Nonrepudiation usage permitted.

6
Key encipherment usage permitted.

7
Data encipherment usage permitted.

8
Key certificate sign usage permitted.

9
Certificate Revocation List sign usage permitted.

10
Only key encipher usage permitted during key agreement.

11
Only key decipher usage permitted during key agreement.

12-31
Reserved.

274 112 SMF82_TAG_KEY_EC_CURVE 1 binary ECC curve type.

X'01'
Prime curve.

X'02'
Brainpool curve.

281 119 SMF82_TAG_KEY_COMP_TAG 0 N/A The key is compliant-tagged.

Subtype 42

PKCS#11 object lifecycle event
The main section for this subtype consists of a number of Tag-Length-Value (TLV) triplets. The following
triplets may be contained in the record. The specific set of triplets is dependent on the type of event and
the information that is available. This replaces subtype 23.

Record Type 82

Appendix B. ICSF SMF records 399

Table 152. Subtype 42 PKCS#11 object lifecycle event

Tag value Name Length Format Description

Dec Hex

256 100 SMF82_TAG_KEY_EVENT 1 binary Object event. This field always occurs first in the record.

X'10'
Object added to KDS.

X'11'
Object updated in KDS.

X'12'
Object deleted from KDS.

X'13'
Object archived.

X'14'
Object restored.

X'15'
Object metadata changed.

X'17'
Object pre-activated.

X'18'
Object activated.

X'19'
Object deactivated.

X'1B'
Object wrapped by another key.

257 101 SMF82_TAG_KDS_LABEL 72 EBCDIC The 44-byte key handle left-justified and padded on the right with
blanks. If the sequence number of the handle is 'FFFFFFFF', this
was a raw object.

258 102 SMF82_TAG_KDS_DSNAME 44 EBCDIC The dataset name of the KDS.

259 103 SMF82_TAG_KEY_NAME 1 - 513 EBCDIC The CKA_LABEL attribute from the object. If the CKA_Label is
greater than 512 characters, the plus (+) symbol is placed at the
513th character to indicate truncation.

260 104 SMF82_TAG_OBJ_TYPE 1 binary Object type.

X'01'
Symmetric key.

X'02'
Public key.

X'03'
Private key.

X'05'
Certificate.

X'06'
Domain parameters.

X'07'
Data object.

X'0C'
PKCS #11 token.

Record Type 82

400 z/OS: z/OS ICSF System Programmer's Guide

Table 152. Subtype 42 PKCS#11 object lifecycle event (continued)

Tag value Name Length Format Description

Dec Hex

261 105 SMF82_TAG_KEY_FPRINT 1 - 64 binary One or more key fingerprints.

The first byte is the number (n) of fingerprints present for the key.
Following that are n type-length-value triplets. Within each of these
triplets is a 1-byte fingerprint type, followed by a 1-byte length for
the triplet, followed by the fingerprint.

Fingerprint types:

X'01'
Ciphertext obtained from encrypting a data block filled with
binary zeros in ECB mode.

X'02'
SHA-1 hash of the public key.

For example, X'010105010203' indicates that there is one
fingerprint value (01) which is the ciphertext obtained from using
the key to encrypt 8 bytes of binary zeros in ECB mode (01). The
fingerprint is 3 bytes in length (05 – 2) and the value is X'010203'.

Note: If the event pertains to a record in the TKDS, the key
fingerprint is only present when using a KDSR-format dataset.

262 106 SMF82_TAG_SERVICE 8 EBCDIC The service associated with the event.

265 109 SMF82_TAG_KEY_SEC 1 binary Key security.

X'02'
Clear key.

X'03'
Key encrypted under master key.

266 10A SMF82_TAG_KEY_ALG 1 binary Key algorithm.

X'01'
Generic symmetric.

X'02'
DES.

X'03'
AES.

X'05'
RC4.

X'06'
Blowfish.

X'07'
RSA.

X'08'
DSA.

X'09'
ECC.

X'0A'
Diffie-Hellman.

X'0B'
SM2.

X'0C'
SM4.

X'0D'
ChaCha20.

270 10E SMF82_TAG_KEY_LEN 2 binary The length of the key (in bits).

Record Type 82

Appendix B. ICSF SMF records 401

Table 152. Subtype 42 PKCS#11 object lifecycle event (continued)

Tag value Name Length Format Description

Dec Hex

271 10F SMF82_TAG_KEY_CP 16 EBCDIC Key crypto period. The start date followed by the end date for the
record in YYYYMMDD format (therefore, YYYYMMDDYYYYMMDD).
If a date is not set, that portion of the key crypto period will be
blanks. Applies to records in the KDS which have at least one date
set.

273 111 SMF82_TAG_KEY_USAGE_TKDS 4 binary Key usage for private key, public key, and secret key objects.

Bit
Meaning when set

0
Data encryption allowed.

1
Data decryption allowed.

2
Key derivation allowed.

3
Sign allowed where signature is appendix.

4
Verify allowed where signature is appendix.

5
Sign allowed where data is recovered from signature.

6
Verify allowed where data is recovered from signature.

7
Key wrapping allowed.

8
Key unwrapping allowed.

9
Key usage must be FIPS-compliant.

10-31
Reserved.

274 112 SMF82_TAG_KEY_EC_CURVE 1 binary ECC curve type.

X'01'
Prime curve.

X'02'
Brainpool curve.

X'03'
SM2 curve.

X'04'
Edwards curve.

Record Type 82

402 z/OS: z/OS ICSF System Programmer's Guide

Table 152. Subtype 42 PKCS#11 object lifecycle event (continued)

Tag value Name Length Format Description

Dec Hex

279 117 SMF82_TAG_FIPS_INFO 4 binary FIPS information related to the event.

Bit
Meaning when set

0
FIPSMODE(YES) in effect.

1
FIPSMODE(COMPAT) in effect.

2
Request was evaluated for FIPS-compliance due to system
settings. (Either FIPSMODE(YES) is in effect or
FIPSMODE(COMPAT) is in effect, but the request was not
exempt from FIPS-compliance.)

3
Request was evaluated for FIPS-compliance at user request.
(Either the object involved had the FIPS compliance flag on or
FIPS-compliance was requested via a parameter on the
service call.)

4
Request passed FIPS evaluation.

5-31
Reserved.

Subtype 43

Regional cryptographic server configuration
Table 153. Subtype 43 Regional cryptographic server configuration

Offsets Name Length Format Description

0 0 SMF_RCS_CONFIG_FLAGS 4 binary Regional cryptographic server configuration bits.

Bit
Meaning When Set

0
Regional cryptographic server brought online.

1
Regional cryptographic server taken offline.

2-31
Reserved.

4 4 SMF_RCS_CONFIG_INDEX 1 binary Regional cryptographic server index.

5 5 SMF_RCS_CONFIG_SN 8 EBCDIC Regional cryptographic server serial number.

13 D SMF_RCS_CONFIG_Port 5 EBCDIC Regional cryptographic server port number.

18 12 SMF_RCS_CONFIG_HostLen 2 binary Length of the regional cryptographic server host name.

20 14 SMF_RCS_CONFIG_Host 256 EBCDIC Regional cryptographic server host name.

276 114 SMF_RCS_CONFIG_API 4 binary Regional cryptographic server API level - VVRRxxxx.

280 118 SMF_RCS_CONFIG_Geo 2 binary Regional cryptographic server geography.

282 11A SMF_RCS_CONFIG_GenMin 1 binary Regional cryptographic server minimum compatible generation.

283 11B SMF_RCS_CONFIG_GenCur 1 binary Regional cryptographic server current generation.

284 11C 4 Reserved.

Record Type 82

Appendix B. ICSF SMF records 403

Subtype 44

CCA symmetric key usage event
The main section for this subtype consists of a number of Tag-Length-Value (TLV) triplets. The following
triplets may be contained in the record. The specific set of triplets is dependent on the type of event and
the information that is available.

Table 154. Subtype 44 CCA symmetric key usage event

Tag value Name Length Format Description

Dec Hex

257 101 SMF82_TAG_KDS_LABEL 72 EBCDIC The label in the KDS.

259 103 SMF82_TAG_KEY_NAME 64 EBCDIC The key name from the token. Applies to variable-length CCA
tokens only.

261 105 SMF82_TAG_KEY_FPRINT 1 - 64 binary One or more key fingerprints.

The first byte is the number (n) of fingerprints present for the key.
Following that are n type-length-value triplets. Within each of these
triplets is a 1-byte fingerprint type, followed by a 1-byte length for
the triplet, followed by the fingerprint.

Fingerprint types:

X'01'
Ciphertext obtained from encrypting a data block filled with
binary zeros in ECB mode.

X'03'
SHA-256 algorithm. See Appendix E in z/OS Cryptographic
Services ICSF Application Programmer's Guide for more
information.

X'04'
SHAVP1 algorithm. See Appendix E in z/OS Cryptographic
Services ICSF Application Programmer's Guide for more
information.

X'05'
CMACZERO (only present for compliant-tagged AES keys). See
the Key Test2 (CSNBKYT2/CSNEKYT2) callable service in z/OS
Cryptographic Services ICSF Application Programmer's Guide
for more information.

For example, X'010105010203' indicates that there is one
fingerprint value (01) which is the ciphertext obtained from using
the key to encrypt a data block of binary zeros in ECB mode (01).
The fingerprint is 3 bytes in length (05 – 2) and the value is
X'010203'.

262 106 SMF82_TAG_SERVICE 8 EBCDIC The service associated with the event.

264 108 SMF82_TAG_TOK_FMT 1 binary The format of the token.

X'01'
Fixed length CCA token.

X'02'
Variable length CCA token.

X'03'
TR-31 key block.

X'04'
RKX token.

Note:

1. When format is RKX token, no other key or token related fields
are present.

2. When format is TR-31 key block, the only other key or token
related field that may be present is the key fingerprint.

Record Type 82

404 z/OS: z/OS ICSF System Programmer's Guide

Table 154. Subtype 44 CCA symmetric key usage event (continued)

Tag value Name Length Format Description

Dec Hex

265 109 SMF82_TAG_KEY_SEC 1 binary Key security.

X'01'
No key present.

X'02'
Clear key.

X'03'
Key encrypted under master key.

X'04'
Key encrypted under key encrypting key.

266 10A SMF82_TAG_KEY_ALG 1 binary Key algorithm.

X'02'
DES.

X'03'
AES.

X'04'
HMAC.

267 10B SMF82_TAG_KEY_TYPE 2 binary Key type.

The key type from the token. Applies to variable-length CCA tokens
only. See “Variable-length symmetric key token” in z/OS
Cryptographic Services ICSF Application Programmer's Guide for
the list of key types.

268 10C SMF82_TAG_KEY_CV 8 binary Key control vector.

The first eight bytes of the control vector from the token. Applies to
fixed-length DES CCA tokens only.

See Appendix C in z/OS Cryptographic Services ICSF Application
Programmer's Guide for information on how to interpret the control
vector.

269 10D SMF82_TAG_KEY_USAGE_CKDS 3 - 33 binary Key usage fields.

Consists of a 1 byte count followed by one or more 2-byte key
usage fields. Applies to variable-length CCA tokens only.

See Appendix B in z/OS Cryptographic Services ICSF Application
Programmer's Guide for the list of key usage values for variable
length tokens.

270 10E SMF82_TAG_KEY_LEN 2 binary The length of the key (in bits). Applies to fixed-length CCA tokens
only.

275 113 SMF82_TAG_START_TOD 16 binary Start time of the interval in STCKE format.

276 114 SMF82_TAG_END_TOD 16 binary End time of the interval in STCKE format.

277 115 SMF82_TAG_USG_COUNT 4 binary Number of usages accounted for in this record.

278 116 SMF82_TAG_KEY_OLD 0 binary The key is internal, but not wrapped under the current master key.
Additionally, if key store policy is enabled for CKDS, the key is
wrapped under the old master key. Applies to token usage only.

280 118 SMF82_TAG_KEY_TIV variable binary A key token identification value. A string of bytes present in the key
token. Can be used to help uniquely identify a key token.

Notes:

1. Only present when TOK_FMT is a fixed-length CCA token.
2. This is the 4-byte token validation value. For more information,

see Appendix B. Key Token Formats (Sections “AES Key Token
Formats” and “DES Key Token Formats”) in z/OS Cryptographic
Services ICSF Application Programmer's Guide.

Record Type 82

Appendix B. ICSF SMF records 405

Table 154. Subtype 44 CCA symmetric key usage event (continued)

Tag value Name Length Format Description

Dec Hex

281 119 SMF82_TAG_KEY_COMP_TAG 0 N/A The key is compliant-tagged.

Note: May only be present when KEY_ALG is DES and TOK_FMT is a
fixed-length CCA token or when KEY_ALG is AES and TOK_FMT is a
variable-length CCA token. For DES key tokens, only when the key
derivation function (KDF) is X'02' or greater is it considered
compliant-tagged.

The following tags may be present in the end user audit section:

• X500_IDN
• X500_SDN
• IDID_USRI
• IDID_USRF
• IDID_REG
• USRI

See “Audit header and audit section” on page 369 for more details.

Subtype 45

CCA asymmetric key usage event
The main section for this subtype consists of a number of Tag-Length-Value (TLV) triplets. The following
triplets may be contained in the record. The specific set of triplets is dependent on the type of event and
the information that is available.

Table 155. Subtype 45 CCA asymmetric key usage event

Tag value Name Length Format Description

Dec Hex

257 101 SMF82_TAG_KDS_LABEL 72 EBCDIC The 64-byte KDS label left-justified and padded on the right with
blanks.

259 103 SMF82_TAG_KEY_NAME 64 EBCDIC The key name from the token.

260 104 SMF82_TAG_OBJ_TYPE 1 binary Object type.

X'02'
Public key.

X'05'
Certificate.

X'0B'
Public/Private key pair.

X'0D'
Trusted block.

Notes:

• When the object type is trusted block, no other key or token
related information is present.

• When the object type is certificate, the only other key related
information present is the key fingerprint (KEY_FPRINT).

Record Type 82

406 z/OS: z/OS ICSF System Programmer's Guide

Table 155. Subtype 45 CCA asymmetric key usage event (continued)

Tag value Name Length Format Description

Dec Hex

261 105 SMF82_TAG_KEY_FPRINT 1 - 64 binary One or more key fingerprints.

The first byte is the number (n) of fingerprints present for the key.
Following that are n type-length-value triplets. Within each of these
triplets is a 1-byte fingerprint type, followed by a 1-byte length for
the triplet, followed by the fingerprint.

Fingerprint types:

X'02'
SHA-1 hash of the public key.

For example, X'010105010203' indicates that there is one
fingerprint value (01) which is the ciphertext obtained from using
the key to encrypt 8 bytes of binary zeros in ECB mode (01). The
fingerprint is 3 bytes in length (05 – 2) and the value is X'010203'.

262 106 SMF82_TAG_SERVICE 8 EBCDIC The service associated with the event.

265 109 SMF82_TAG_KEY_SEC 1 binary Key security.

X'01'
No key present.

X'02'
Clear key.

X'03'
Key encrypted under master key.

X'04'
Key encrypted under key encrypting key.

266 10A SMF82_TAG_KEY_ALG 1 binary Key algorithm.

X'07'
RSA.

X'08'
DSA.

X'09'
ECC.

Note: When the algorithm is DSA, the only other key or token
information present is the object type.

270 10E SMF82_TAG_KEY_LEN 2 binary The length of the public key (in bits).

Record Type 82

Appendix B. ICSF SMF records 407

Table 155. Subtype 45 CCA asymmetric key usage event (continued)

Tag value Name Length Format Description

Dec Hex

272 110 SMF82_TAG_KEY_USAGE_PKDS 4 binary Key usage for private keys.

Bit
Meaning when set

0
Undefined.

1
Key management usage permitted.

2
Signature usage permitted.

3
Key translation permitted.

4
Key agreement usage permitted.

X'05'
Nonrepudiation usage permitted.

X'06'
Key encipherment usage permitted.

X'07'
Data encipherment usage permitted.

X'08'
Key certificate sign usage permitted.

X'09'
Certificate Revocation List sign usage permitted.

X'10'
Only key encipher usage permitted during key agreement.

X'11'
Only key decipher usage permitted during key agreement.

12-31
Reserved.

274 112 SMF82_TAG_KEY_EC_CURVE 1 binary ECC curve type.

X'01'
Prime curve.

X'02'
Brainpool curve.

275 113 SMF82_TAG_START_TOD 16 binary Start time of the interval in STCKE format.

276 114 SMF82_TAG_END_TOD 16 binary End time of the interval in STCKE format.

277 115 SMF82_TAG_USG_COUNT 4 binary Number of usages accounted for in this record.

278 116 SMF82_TAG_KEY_OLD 0 N/A The key is internal, but not wrapped under the current master key.
Applies to token usage only.

281 119 SMF82_TAG_KEY_COMP_TAG 0 N/A The key is compliant-tagged.

The following tags may be present in the end user audit section:

• X500_IDN
• X500_SDN
• IDID_USRI
• IDID_USRF
• IDID_REG
• USRI

See “Audit header and audit section” on page 369 for more details.

Record Type 82

408 z/OS: z/OS ICSF System Programmer's Guide

Subtype 46

PKCS#11 key usage event
The main section for this subtype consists of a number of Tag-Length-Value (TLV) triplets. The following
triplets may be contained in the record. The specific set of triplets is dependent on the type of event and
the information that is available.

Table 156. Subtype 46 PKCS#11 key usage event

Tag value Name Length Format Description

Dec Hex

257 101 SMF82_TAG_KDS_LABEL 72 EBCDIC The 44-byte key handle left-justified and padded on the right with
blanks. If the sequence number of the handle is 'FFFFFFFF', this
was a raw object.

259 103 SMF82_TAG_KEY_NAME 1 - 513 EBCDIC The CKA_LABEL attribute from the object. If the CKA_Label is
greater than 512 characters, the plus (+) symbol is placed at the
513th character to indicate truncation.

260 104 SMF82_TAG_OBJ_TYPE 1 binary Object type.

X'01'
Symmetric key.

X'02'
Public key.

X'03'
Private key.

X'05'
Certificate.

X'06'
Domain parameters.

X'07'
Data object.

X'0C'
PKCS #11 token.

261 105 SMF82_TAG_KEY_FPRINT 1 - 64 binary One or more key fingerprints.

The first byte is the number (n) of fingerprints present for the key.
Following that are n type-length-value triplets. Within each of these
triplets is a 1-byte fingerprint type, followed by a 1-byte length for
the triplet, followed by the fingerprint.

Fingerprint types:

X'01'
Ciphertext obtained from encrypting a data block filled with
binary zeros in ECB mode.

X'02'
SHA-1 hash of the public key.

For example, X'010105010203' indicates that there is one
fingerprint value (01) which is the ciphertext obtained from using
the key to encrypt 8 bytes of binary zeros in ECB mode (01). The
fingerprint is 3 bytes in length (05 – 2) and the value is X'010203'.

262 106 SMF82_TAG_SERVICE 8 EBCDIC The service associated with the event.

265 109 SMF82_TAG_KEY_SEC 1 binary Key security.

X'02'
Clear key.

X'03'
Key encrypted under master key.

Record Type 82

Appendix B. ICSF SMF records 409

Table 156. Subtype 46 PKCS#11 key usage event (continued)

Tag value Name Length Format Description

Dec Hex

266 10A SMF82_TAG_KEY_ALG 1 binary Key algorithm.

X'01'
Generic symmetric.

X'02'
DES.

X'03'
AES.

X'05'
RC4.

X'06'
Blowfish.

X'07'
RSA.

X'08'
DSA.

X'09'
ECC.

X'0A'
Diffie-Hellman.

X'0B'
SM2.

X'0C'
SM4.

X'0D'
ChaCha20.

270 10E SMF82_TAG_KEY_LEN 2 binary The length of the key (in bits). For RSA, this is the modulus length.
For other asymmetric keys, this is the length of the public key.

273 111 SMF82_TAG_KEY_USAGE_TKDS 4 binary Key usage.

Bit
Meaning when set

0
Data encryption allowed.

1
Data decryption allowed.

2
Key derivation allowed.

3
Sign allowed where signature is appendix.

4
Verify allowed where signature is appendix.

5
Sign allowed where data is recovered from signature.

6
Verify allowed where data is recovered from signature.

7
Key wrapping allowed.

8
Key unwrapping allowed.

9
Key usage must be FIPS-compliant.

10-31
Reserved.

Record Type 82

410 z/OS: z/OS ICSF System Programmer's Guide

Table 156. Subtype 46 PKCS#11 key usage event (continued)

Tag value Name Length Format Description

Dec Hex

274 112 SMF82_TAG_KEY_EC_CURVE 1 binary ECC curve type.

X'01'
Prime curve.

X'02'
Brainpool curve.

X'03'
SM2 curve.

X'04'
Edwards curve.

275 113 SMF82_TAG_START_TOD 16 binary Start time of the interval in STCKE format.

276 114 SMF82_TAG_END_TOD 16 binary End time of the interval in STCKE format.

277 115 SMF82_TAG_USG_COUNT 4 binary Number of usages accounted for in this record.

279 117 SMF82_TAG_FIPS_INFO 4 binary FIPS information related to the event.

Bit
Meaning when set

0
FIPSMODE(YES) in effect.

1
FIPSMODE(COMPAT) in effect.

2
Request was evaluated for FIPS-compliance due to system
settings. (Either FIPSMODE(YES) is in effect or
FIPSMODE(COMPAT) is in effect, but the request was not
exempt from FIPS-compliance.)

3
Request was evaluated for FIPS-compliance at user request.
(Either the object involved had the FIPS compliance flag on or
FIPS-compliance was requested via a parameter on the
service call.)

4
Request passed FIPS evaluation.

5-31
Reserved.

The following tags may be present in the end user audit section:

• X500_IDN
• X500_SDN
• IDID_USRI
• IDID_USRF
• IDID_REG
• USRI

See “Audit header and audit section” on page 369 for more details.

Subtype 47

PKCS#11 no key usage event
The main section for this subtype consists of a number of Tag-Length-Value (TLV) triplets. The following
triplets may be contained in the record. The specific set of triplets is dependent on the type of event and
the information that is available.

Record Type 82

Appendix B. ICSF SMF records 411

Table 157. Subtype 47 PKCS#11 no key usage event

Tag value Name Length Format Description

Dec Hex

262 106 SMF82_TAG_SERVICE 8 EBCDIC The service associated with the event. Service is either CSF1PPRF
or CSF1POWH.

275 113 SMF82_TAG_START_TOD 16 binary Start time of the interval in STCKE format.

276 114 SMF82_TAG_END_TOD 16 binary End time of the interval in STCKE format.

277 115 SMF82_TAG_USG_COUNT 4 binary Number of usages accounted for in this record.

279 117 SMF82_TAG_FIPS_INFO 4 binary FIPS information related to the event.

Bit
Meaning when set

0
FIPSMODE(YES) in effect.

1
FIPSMODE(COMPAT) in effect.

2
Usage was evaluated for FIPS-compliance due to system
settings. (Either FIPSMODE(YES) is in effect or
FIPSMODE(COMPAT) is in effect, but usage was not exempt
from FIPS-compliance.)

3
Usage was evaluated for FIPS-compliance at user request.
(Either the object used had the FIPS compliance flag on or
FIPS-compliance was requested via a parameter on the
service call.)

4
Usage passed FIPS evaluation.

5-31
Reserved.

The following tags may be present in the end user audit section:

• X500_IDN
• X500_SDN
• IDID_USRI
• IDID_USRF
• IDID_REG
• USRI

See “Audit header and audit section” on page 369 for more details.

Subtype 48

Compliance warning event
The main section for this subtype consists of a number of Tag-Length-Value (TLV) triplets. The following
triplets may be contained in the record. The specific set of triplets depends on the type of event and the
information that is available.

Record Type 82

412 z/OS: z/OS ICSF System Programmer's Guide

Table 158. Subtype 48 Compliance warning event

Dec Hex Name Length Format Description

520 208 SMF82_TAG_COMP_RESULT 2 binary The compliance result of the operation. This tag is always present
and always occurs first.

When the value is hexadecimal zeros (X'0000'), the service is
allowed by the compliance level, but ICSF does not support using
compliant-tagged tokens with the service. This is referred to as
compliance not supported elsewhere in the documentation. The
service may support compliant-tagged tokens in the future.

Bit
Meaning when set

0
Compliant operation.

1
Non-compliant service.

2
Operation that is requested within a service is non-compliant.

3
Non-compliant key or keys used.

4-7
Reserved.

8
The request was targeted to a coprocessor that is not capable
of producing compliance warnings.

9-15
Reserved.

522 20A SMF82_TAG_COMP_LVL 1 binary The compliance level that the operation was checked against.

X'01'
PCI-HSM 2016.

262 106 SMF82_TAG_SERVICE 8 EBCDIC The service that was invoked.

523 20B SMF82_TAG_COMP_TOK variable binary A collection of triplets that contains information about one key that
is used in the request. There is one COMP_TOK triplet for each key
token that is used in the request.

The follow triplets make up the value portion of the COMP_TOK TLV triplet.

521 209 SMF82_TAG_COMP_CHK 1 binary The results of the compliance check performed against the key
token.

Bit
Meaning when set

0
Compliant key.

1
Key was not evaluated for compliance. The key does not affect
the compliance of the operation.

2
Weak key.

3
Key type or usage attributes is not compliant.

4
Evaluation error.

5
NOCV KEK.

6
Compliance unknown. Only set for X.509 certificates.

7
Reserved.

Record Type 82

Appendix B. ICSF SMF records 413

Table 158. Subtype 48 Compliance warning event (continued)

Dec Hex Name Length Format Description

524 20C SMF82_TAG_KDS_TYPE 1 binary The KDS type corresponding to the key token (for example, the KDS
where this key might be stored). This has no bearing on whether
the key token is in the KDS.

X'01'
CKDS.

X'02'
PKDS.

257 101 SMF82_TAG_KDS_LABEL 64 or 72 EBCDIC The KDS label left justified and padded on the right with blanks.

When KDS_TYPE is CKDS, the length is 72.

When KDS_TYPE is PKDS, the length is 64.

Note: Present only when a key label is passed to the service.

259 103 SMF82_TAG_KEY_NAME 64 EBCDIC The key name from the token.

Note: Applies to CCA variable-length tokens and PKA tokens only.

260 104 SMF82_TAG_OBJ_TYPE 1 binary Object type.

X'02'
Public key.

X'05'
Certificate.

X'0B'
Public/Private key pair.

X'0D'
Trusted block.

Notes:

1. Present only when KDS_TYPE is PKDS.
2. When object type is trusted block, no other key or token-

related information is present.
3. When the object type is certificate, the only other key related

information present is the key fingerprint (KEY_FPRINT).

Record Type 82

414 z/OS: z/OS ICSF System Programmer's Guide

Table 158. Subtype 48 Compliance warning event (continued)

Dec Hex Name Length Format Description

261 105 SMF82_TAG_KEY_FPRINT 1 – 64 binary One or more key fingerprints.

The first byte is the number (n) of fingerprints present for the key.
Following that are n type-length-value triplets. Within each of these
triplets is a 1-byte fingerprint type, followed by a 1-byte length for
the triplet, followed by the fingerprint.

Fingerprint types:

X'01'
Ciphertext that is obtained from encrypting a data block filled
with binary zeros in ECB mode.

X'02'
SHA-1 hash of the public key1.

X'03'
SHA-256 algorithm. For more information, see Appendix E,
Cryptographic algorithms and processes, in z/OS
Cryptographic Services ICSF Application Programmer's Guide.

X'04'
SHAVP1 algorithm. For more information, see Appendix E,
Cryptographic algorithms and processes, in z/OS
Cryptographic Services ICSF Application Programmer's Guide.

X'05'
CMACZERO (only present for compliant-tagged AES keys). See
the Key Test2 (CSNBKYT2/CSNEKYT2) callable service in z/OS
Cryptographic Services ICSF Application Programmer's Guide
for more information.

For example, X'010105010203' indicates that there is one
fingerprint value (01) which is the ciphertext that is obtained from
using the key to encrypt a data block of binary zeros in ECB mode
(01). The fingerprint is 3 bytes in length (05 – 2) and the value is
X'010203'.
1 The public key is converted to an ASN.1 DER-encoded
subjectPublicKey BIT STRING as specified in RFC 3279. The key
fingerprint is the hash of the subjectPublicKey (excluding the tag,
length, and number of unused bits).

Record Type 82

Appendix B. ICSF SMF records 415

Table 158. Subtype 48 Compliance warning event (continued)

Dec Hex Name Length Format Description

264 108 SMF82_TAG_TOK_FMT 1 binary The format of the token.

X'01'
Fixed length CCA token.

X'02'
Variable length CCA token.

X'03'
TR-31 key block.

X'04'
RKX token.

X'05'
RSA DSI PKCS #1 V2 OAEP format (PKCSOAEP).

X'06'
RSA DSI PKCS #1 block type 02 format (PKCS-1.2).

X'07'
Zero padded (ZERO-PAD).

X'08'
PKA92 format (PKA92).

X'09'
EMV or Smart Card format (EMVCRT, EMVDDA, EMVDDAE,
SCCOMCRT, SCCOMME, or SCVISA).

Notes:

1. When format is X'04' or greater, no other key or token-related
fields are present.

2. When format is TR-31 key block, the only other key or token-
related field that can be present is the key fingerprint.

265 109 SMF82_TAG_KEY_SEC 1 binary Key security.

X'01'
No key present.

X'02'
Clear key.

X'03'
Key encrypted under master key.

X'04'
Key encrypted under key encrypting key.

266 10A SMF82_TAG_KEY_ALG 1 binary Key algorithm.

X'02'
DES.

X'03'
AES.

X'04'
HMAC.

X'07'
RSA.

X'08'
DSA.

X'09'
ECC.

Note:

When the algorithm is DSA, the only other key or token information
present is the object type.

Record Type 82

416 z/OS: z/OS ICSF System Programmer's Guide

Table 158. Subtype 48 Compliance warning event (continued)

Dec Hex Name Length Format Description

267 10B SMF82_TAG_KEY_TYPE 2 binary Key type.

The key type from the token. See “Variable-length symmetric key
token” in z/OS Cryptographic Services ICSF Application
Programmer's Guide for the list of key types.

Notes:

1. Present only when KDS_TYPE is CKDS.
2. Applies to variable-length CCA tokens only.

268 10C SMF82_TAG_KEY_CV 8 binary Key control vector.

The first 8 bytes of the control vector from the token.

See Appendix C, Control vectors and changing control vectors with
the CVT callable service, in z/OS Cryptographic Services ICSF
Application Programmer's Guide for information on how to interpret
the control vector.

Notes:

1. Present only when KDS_TYPE is CKDS.
2. Applies to fixed-length DES CCA tokens only.

269 10D SMF82_TAG_KEY_USAGE_CKDS 3 - 33 binary Key usage fields.

Consists of a 1 byte count followed by one or more 2-byte key
usage fields. Applies to variable-length CCA tokens only.

See Appendix B, Key token formats, in z/OS Cryptographic Services
ICSF Application Programmer's Guide for the list of key usage
values for variable length tokens.

Note: Present only when KDS_TYPE is CKDS.

270 10E SMF82_TAG_KEY_LEN 2 binary The length of the key (in bits).

Notes:

1. When KDS_TYPE is CKDS, applies to fixed-length CCA tokens
only.

2. When KDS_TYPE is PKDS, this is the length of the public key.

Record Type 82

Appendix B. ICSF SMF records 417

Table 158. Subtype 48 Compliance warning event (continued)

Dec Hex Name Length Format Description

272 110 SMF82_TAG_KEY_USAGE_PKDS 4 binary Key usage for private keys.

Bit
Meaning when set

0
Undefined.

1
Key management usage permitted.

2
Signature usage permitted.

3
Key translation permitted.

4
Key agreement usage permitted.

5
Nonrepudiation usage permitted.

6
Key encipherment usage permitted.

7
Data encipherment usage permitted.

8
Key certificate sign usage permitted.

9
Certificate Revocation List sign usage permitted.

10
Only key encipher usage permitted during key agreement.

11
Only key decipher usage permitted during key agreement.

12-31
Reserved.

Note: Present only when KDS_TYPE is PKDS.

274 112 SMF82_TAG_KEY_EC_CURVE 1 binary ECC curve type.

X'01'
Prime curve.

X'02'
Brainpool curve.

Note: Present only when KDS_TYPE is PKDS and KEY_ALG is ECC.

280 118 SMF82_TAG_KEY_TIV variable binary A key token identification value. A string of bytes present in the key
token. Can be used to help uniquely identify a key token.

Notes:

1. Present only when KDS_TYPE is CKDS and TOK_FMT is a fixed-
length CCA token.

2. This is the 4-byte token validation value. For more information,
see Appendix B. Key Token Formats (Sections “AES Key Token
Formats” and “DES Key Token Formats”) in z/OS Cryptographic
Services ICSF Application Programmer's Guide.

525 20D SMF82_TAG_KEY_DIR 1 binary Key parameter direction.

X'01'
Input key.

X'02'
Output key.

Record Type 82

418 z/OS: z/OS ICSF System Programmer's Guide

Table 158. Subtype 48 Compliance warning event (continued)

Dec Hex Name Length Format Description

526 20E SMF82_TAG_KEY_AGE 1 binary Key age.

X'01'
Pre-existing key.

X'02'
Newly generated key.

527 20F SMF82_TAG_RC 4 binary The return code from the attempt to compliance check the token.
Present only when COMP_CHK indicates an evaluation error.

528 210 SMF82_TAG_RS 4 binary The reason code to go along with the return code from the attempt
to compliance check the token. Present only when COMP_CHK
indicates an evaluation error.

The following tags may be present in the end user audit section:

• X500_IDN
• X500_SDN
• IDID_USRI
• IDID_USRF
• IDID_REG
• USRI

See “Audit header and audit section” on page 369 for more details.

Record Type 82

Appendix B. ICSF SMF records 419

Record Type 82

420 z/OS: z/OS ICSF System Programmer's Guide

Appendix C. CICS-ICSF Attachment Facility

The purpose of the CICS-ICSF Attachment Facility is to enhance the performance of CICS transactions in
the same region as a transaction using long-running ICSF services such as the PKA services and CKDS or
PKDS update services.

Without the CICS-ICSF Attachment Facility, the application that requests a long-running ICSF service is
placed into an OS WAIT. With the CICS-ICSF Attachment Facility, a long running service is transferred to
an L8, and the CICS application is placed into a CICS WAIT, rather than an OS WAIT, for the duration of the
operation.

Note: The CICS-ICSF Attachment Facility can only be used by 31-bit assembler stub functions. The CICS-
ICSF Attachment Facility cannot be used when invoking ICSF APIs with C linkage or 64-bit assembler
stub functions. See Combining C or C++ and Assembler in z/OS XL C/C++ Programming Guide for
information on invoking the 31-bit assembler stubs from a C/C++ program.

Installing the CICS-ICSF Attachment Facility
Before you can use the CICS-ICSF Attachment Facility, the ICSF system programmer, or the CICS
administrator needs to install it. This involves:

• Relinking the ICSF enabling routine, CSFATREN, and the ICSF TRUE, CSFATRUE, if ICSF was previously
installed in an environment without the CICS-ICSF Attachment Facility

• Installing the proper load libraries in the PROC used to start CICS
• Updating the CICS System Definitions (CSD) data set to define the programs to CICS
• Enabling these programs

For information about CICS TRUE programs, refer to CICS Transaction Server for z/OS, Version 5 Release
1 (www.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.devtrial.doc/topics/
devtrial.htm).

Steps for installing the CICS-ICSF attachment facility
1. If ICSF was previously installed in an environment without the CICS-ICSF Attachment Facility (i.e.,

without being linked with the CICS SDFHLOAD data set), the ICSF system programmer will need to
relink the ICSF TRUE, CSFATRUE, and the ICSF enabling routine, CSFATREN. This would be the case if,
for example, (a) the DDDEF entries for ICSF do not have the SDFHLOAD DDDEF pointing to the CICS
SDFHLOAD data set but instead have it pointing to an empty data set, or (b) z/OS (and hence ICSF) was
installed using a ServerPac.

To relink the ICSF modules, first manually update the ICSF DDDEF for SDFHLOAD to point to the CICS
SDFHLOAD data set. (Refer to ICSF sample CSFDDDEF shipped in SAMPLIB.) Then submit a job to
relink the ICSF modules. This is an example of job control language for the relink.

//STEP01 EXEC PGM=IEWL,
// PARM='LIST,XREF,LET,DCBS,RENT,REUS,AMODE(31),RMODE(ANY)'
//SYSLMOD DD DISP=SHR,DSN=yyy.SCSFSTUB (the ICSF load library)
//SYSLIB DD DISP=SHR,DSN=xxxxxx.SDFHLOAD
//SDFHLOAD DD DISP=SHR,DSN=xxxxxx.SDFHLOAD
//SCSFMOD0 DD DISP=SHR,DSN=yyy.SCSFMOD0 (the ICSF load library)
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(10,10))
//SYSPRINT DD SYSOUT=*
//SYSLIN DD *
 INCLUDE SDFHLOAD(DFHEAI)
 REPLACE CSFDHEAI(DFHEAI),CSF0EAI
 INCLUDE SCSFMOD0(CSFATREN)
 ENTRY DFHEAI
 NAME CSFATREN(R)
 INCLUDE SDFHLOAD(DFHEAI)
 REPLACE CSFDHEAI(DFHEAI),CSF0EAI
 INCLUDE SCSFMOD0(CSFATRUE)

© Copyright IBM Corp. 2007, 2021 421

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.devtrial.doc/topics/devtrial.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.devtrial.doc/topics/devtrial.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.devtrial.doc/topics/devtrial.htm

 ENTRY DFHEAI
 NAME CSFATRUE(R)
/*

2. Include the ICSF load module data set in the CICS startup job control language as shown in this
example.

//DFHRPL DD DISP=SHR,DSN=xxxxx.SDFHLOAD
// DD DISP=SHR,DSN=yyy.SCSFSTUB (ICSF callable service stubs)
// DD DISP=SHR,DSN=yyy.SIEALNKE (ICSF shared libraries)
// DD ...
...
//SYSIN DD DISP=SHR,DSN=xxxxx.SYSIN(DFH$SIPx)
...

In the previous sample code, DFH$SIPx includes the entry:

PLTPI=yy,

3. Customize the Program Load Table (PLT), to include the ICSF enabling routine CSFATREN in second
stage initialization.

This is an example input deck for compiling a PLT for automatic enablement of the CICS-ICSF link. This
is ASM code. Assemble it with the CICS macro library, but without the CICS translator.

//SYSIN DD *
*
* List of programs to be executed sequentially during system
* initialization. Required system initialization parm: PLTPI=yy
* DFHPLTCS should be defined in the CSD by CEDA or DFHCSDUP job
*
DFHPLT TYPE=INITIAL,SUFFIX=yy
*
* -------- Second stage of initialization -----------------
*
DFHPLT TYPE=ENTRY,PROGRAM=CSFATREN (Run enable of CSFATRUE)
*
* ---------- Delimiter between Stages 2 and 3 ------------
*
DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM
*
* --------- Third stage of initialization -----------------
* (none)
*
DFHPLT TYPE=FINAL
END
/*

The previous code is an example only. Your CICS administrator can use it as a guide in customizing the
PLT. For more information about coding the PLT, refer to CICS Transaction Server for z/OS, Version 5
Release 1 (www.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.devtrial.doc/
topics/devtrial.htm).

4. Link edit the PLT with these controls:

INCLUDE OBJLIB(DFHPLTyy)
NAME DFHPLTyy(R)

5. The CICS administrator should customize the system CSD to include:

• CSFATRUE
• CSFATREN
• A PLT to indicate that initialization is to call CSFATREN to enable the ICSF TRUE, CSFATRUE

This is an example of the job control language and input. In this example, xxxxx represents the local
CICS prefix, and zzzzzzzz represents the PLT entry that was compiled previously.

//UPDATE JOB ...
//*- -
//DEFINES EXEC PGM=DFHCSDUP,REGION=2M
//STEPLIB DD DISP=SHR,DSN=xxxxxx.SDFHLOAD
// DD DISP=SHR,DSN=zzzzzzzz

422 z/OS: z/OS ICSF System Programmer's Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.devtrial.doc/topics/devtrial.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.devtrial.doc/topics/devtrial.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.devtrial.doc/topics/devtrial.htm

//DFHCSD DD DISP=SHR,DSN=xxxxxx.DFHCSD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
*
DEFINE PROGRAM(CSFATREN) GROUP(ICSF)
 DESCRIPTION(TRUE enablement routine)
 LANGUAGE(ASSEMBLER)
*
DEFINE PROGRAM(CSFATRUE) GROUP(ICSF)
 DESCRIPTION(ICSF interface TRUE)
 LANGUAGE(ASSEMBLER)
 CONCURRENCY(THREADSAFE)
 API(OPENAPI)
*
DEFINE PROGRAM(DFHPLTyy) GROUP(ICSF)
 DESCRIPTION(PLT Program Init for CSFATRUE)
 LANGUAGE(ASSEMBLER)

The PLT in the example runs the program CSFATREN during CICS initialization. CSFATREN
automatically enables the ICSF TRUE, CSFATRUE. If CICS is already started, use a CICS Command
Level Interpreter Transaction (CECI) to enable CSFATRUE. To do this, go into CECI and issue this
statement:

ENABLE PROGRAM('CSFATRUE') TALENGTH(1536) LINKEDITMODE START

You can also do this in a single step with this statement:

CECI ENABLE PROGRAM('CSFATRUE') TALENGTH(1536) LINKEDITMODE START

6. If you have any existing CICS applications which invoke any of the ICSF services in the Wait List, then
these applications must be re-linked with the current ICSF stubs.

Implementing the CICS wait list
The CICS Wait List can be implemented by means of a customer modifiable data set, pointed to by the
Installation Options Data Set (WAITLIST parameter). The default WAITLIST includes all services which
can complete asynchronously (for example, those services which perform I/O to a key data set and those
services which are routed to a cryptographic processor). If the option is not specified, the default CICS
Wait List will be utilized by ICSF when a CICS application invokes an ICSF callable service. If WAITLIST is
specified, the data set specified by this parameter will be used to determine the names of the services to
be placed on the CICS Wait List. A sample data set is provided by ICSF via member CSFWTL01 of
SYS1.SAMPLIB. The sample data set contains the same entries as the default ICSF CICS Wait List -- for
example, the data set contains the names of all ICSF callable services which, by default, will be driven
through the CICS TRUE.

The WAITLIST option should be added to the Installation Options data set under these conditions.

• CICS customers who want to use the default CICS Wait List shipped with ICSF do not need to specify a
WAITLIST keyword. If you have any existing CICS applications which invoke any of the ICSF services in
the Wait List, then these applications must be re-linked with the current ICSF stubs.

• CICS customers who do not want to make use of CICS TRUE must either not enable the TRUE or specify
a WAITLIST keyword and point to an empty wait list data set or you can specify WAITLIST(DUMMY) in
the Installation Options data set.

• CICS customers who wish to modify the ICSF default CICS Wait List should modify the sample Wait List
data set supplied in member CSFWTL01 of SYS1.SAMPLIB. The WAITLIST keyword in the Installation
Options Data Set should be set to point to this data set. If you have any existing CICS applications which
invoke any of the ICSF services in the Wait List, then these applications must be re-linked with the
current ICSF stubs.

To ensure maximum performance, any existing CICS applications which invoke any of the ICSF services in
the Wait List that were linked with ICSF stubs prior to HCR7770 should be re-linked with the current ICSF
stubs.

If you already have the CICS-ICSF Attachment facility installed, there are a number of callable services
which may potentially be routed to a coprocessor or may perform other asynchronous processing. If you

Appendix C. CICS-ICSF Attachment Facility 423

have a modified CICS Wait List, you should ensure that the wait list data set includes all such services,
and any CICS applications which invoke any of these services are re-linked with the current ICSF stubs.
As a model, you can use the default CICS Wait List that is shipped with ICSF which includes all services
which have an asynchronous interface to ICSF or you can use a sample Wait List data set that is also
shipped with ICSF. The sample CICS Wait List data set is contained in member CSFWTL01 of
SYS1.SAMPLIB. The sample data set contains the same entries as the default ICSF CICS Wait List. If you
have an application which invokes a UDX while running under CICS, then the name of the UDX generic
service should be added to the CICS Wait List.

If you use a CICS Wait List data set, you need to identify the data set to ICSF through the
WAITLIST(data_set_name) option in the ICSF Installation Options data set. The data set can be a
member of a PARMLIB, a member of a partitioned data set, or a sequential data set. The data set should
be allocated on a permanently resident volume and should adhere to:

• The format of each record in the data set must be fixed length or fixed block length.
• A physical line in the data set must be a LRECL of 80 characters long. The system ignores any characters

in positions 73 to 80 of the line.
• You can delimit comments by "/*" and "*/" and include them anywhere in the text. A comment cannot

span physical records.
• Only one service may be specified on a logical line.

Note: You can use the WAITLIST(DUMMY) parameter to specify a null CICS Wait List data set, or you can
disable the CICS TRUE if you do not want to utilize the CICS TRUE. See “Parameters in the installation
options data set” on page 33 for additional information.

424 z/OS: z/OS ICSF System Programmer's Guide

Appendix D. Helpful hints for ICSF first time startup

The purpose of this topic is to provide some helpful hints and resolutions for the problems that you may
encounter when starting ICSF for the first time.

See Appendix F, “Systems without Cryptographic features,” on page 435 if you're running in this
environment.

Checklist for first-time startup of ICSF
This is a checklist for the first-time startup of ICSF.

Note: ALL crypto coprocessors cards must be loaded with the same level of code. Otherwise,
unpredictable results can occur.

Step 1. Hardware setup
Note: The CP Assist for Cryptographic Functions feature is required for selection of the coprocessor in the
activation profiles.

Process
LIC installed for CP Assist for Cryptographic Functions

Note: If using TKE, you must Permit each coprocessor for TKE Commands.

Responsible
CE or Client Operator Representative

Where
Support Element

Verify
Via CPC details

• CP Assist for Cryptographic Functions is 'Installed'
• CP Assist for Cryptographic Functions DES/TDES enablement (feature 3863) is 'Installed'

Via PCI Cryptographic Configuration Task

• Status for each coprocessor or accelerator is 'Configured'

Note: If using TKE, the status for each Coprocessor is "Permitted’.

References
Support Element Operations Guide

Completed

Step 2. LPAR activation profiles
Process

PCI Crypto Page Setup
Responsible

CE or Client Operator Representative
Where

Support Element
Verify

Control Domain Index

Usage Domain Index

© Copyright IBM Corp. 2007, 2021 425

PCI Cryptographic Candidate List includes all CCA Crypto Express coprocessors and accelerators that
CAN be online

PCI Cryptographic Online List includes all CCA Crypto Express coprocessors and accelerators that
WILL be online when activation is complete (Selections in the Online List MUST be selected in the
Candidate List)

References
Support Element Operations Guide

z/OS Cryptographic Services ICSF TKE Workstation User's Guide (LPAR Considerations)

zSeries PR/SM Planning Guide

Completed

Note: If TKE is to be used, ALL cryptographic coprocessors that you want TKE to be able to control MUST
be defined in the Online and Candidate Lists. Also, the Usage Domain for the TKE Host LPAR MUST be
unique. While the same domain may be used by other LPARs as long as these LPARs do not share any of
the same cards, the TKE Host domain must have access to all the cards so that prohibits any other LPAR
from using the same domain.

Step 3. ICSF setup
Process

Install and Customize ICSF
Responsible

System Programmer and ICSF Administrator
Where

TSO and ISPF Panels
Verify

Customize SYS1.PARMLIB

• Add CSF.SCSFMOD0 and CSF.SCSFSTUB to the LNKLST concatenation
• Update PROGxx to APF authorize CSF.SCSFMOD0 and CSF.SCSFSTUB
• Update IKJTSOxx for ICSF by adding CSFDAUTH and CSFDPKDS to the AUTHPGM and AUTHTSF

parameter lists. To change the active IKJTSOxx member of SYS1.PARMLIB, use the PARMLIB
UPDATE command.

CKDS and PKDS created

ICSF Startup Procedure created

Installation Options Dataset created

• The DOMAIN parameter in the installation options data set is optional. It is required if more than
one domain is specified as the usage domain on the PR/SM panels or if running in native mode.

• CKDS and PKDS names specified
• COMPAT(NO)

Access provided to the ICSF panels

References
Chapter 2, “Installation, initialization, and customization,” on page 11

Completed

Step 4. TKE setup
If you are not using TKE, proceed to the next step.

Process
Initialize the TKE Workstation.

426 z/OS: z/OS ICSF System Programmer's Guide

Configure TCP/IP on the Host and the TKE Workstation.

Perform passphrase or smart card setup.

Setup the TKE Host Transaction Program:

• Create JCL to start the TKE Host Transaction Program.
• RACF Security Setup.
• Start the TKE Host Transaction Program.

Responsible
Network Programmer, System Programmer and TKE Administrator.

Where
ISPF Panels, TKE Workstation.

Verify
CSFTTKE is authorized in the AUTHCMD list of IKJTSOxx in SYS1.PARMLIB.

TKE Host Transaction Program (CSFTTCP) is defined in the RACF STARTED class (Note: If your
installation has a Generic Userid associated to all started procedures, this is not necessary).

CSFTTKE profile is defined in the RACF FACILITY and RACF APPL classes.

The userid associated with the TKE Host Transaction Program (CSFTTCP) must be authorized to the
CSFCRC, CSFKIM, CSFKRC, CSFKRD, CSFKRR, CSFKRW, CSFKYT, CSFKYT2, CSFPCI, CSFPKRC,
CSFPKRW, and CSFPKI profiles in the CSFSERV class.

References
z/OS Cryptographic Services ICSF TKE Workstation User's Guide (See Topics: TKE Workstation Setup
and Customization and TKE TCP/IP and Host Considerations.)

Completed

Step 5. ICSF startup
Process

Start ICSF
Responsible

Client Operator Representative or System Programmer
Where

Operator Console
References

Chapter 2, “Installation, initialization, and customization,” on page 11
Completed

Step 6. Loading master keys and initializing the CKDS through ICSF panels
Note: When defining a master key by specifying master key parts, make sure that the key parts are
recorded and saved in a secure location. When you are entering the key parts for the first time, be aware
that you might need to reenter these same key values at a later date to restore master key values that
have been cleared. If defining a master key by using a pass phrase, realize that the same pass phrase
always produces the same master key values and is therefore as critical and sensitive as the master key
values themselves. Make sure that you save the pass phrase so that you can later reenter it if needed.
Because of the sensitive nature of the pass phrase, make sure that you secure it in a safe place.

If you are using TKE, proceed to the next step.

Process
Passphrase Initialization to load and SET master keys and initialize CKDS and PKDS

- OR -

Clear Master Key Entry

Appendix D. Helpful hints for ICSF first time startup 427

Note: Using the Coprocessor Management panel, the master keys can be loaded into all the
coprocessors at the same time.

• Load DES New Master Key (optional)
• Load RSA New Master Key (optional)
• Load New AES master key if running on z10 or newer servers with a CCA Crypto Express

coprocessor and the Nov. 2008 or newer licensed internal code. (optional)
• Load New ECC master key if running on z10 or newer servers with a CCA Crypto Express

coprocessor and the Sept. 2011 or newer licensed internal code. (optional)
• Initialize CKDS
• Initialize the PKDS
• Enable PKA Callable Services control

Note: The PKA Callable Services control is disabled if the system has a CEX3C or newer with the
Sept. 2011 or newer licensed internal code.

Responsible
ICSF Administrator and Key Officers

Where
ICSF Panels

Verify
In System Log (Systems with CCA Crypto Express coprocessors and accelerators):

CSFM608I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM608I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM654I KEY ARCHIVING USE CONTROL IS DISABLED.
CSFM015I FIPS 140 SELF CHECKS FOR PKCS11 SERVICES
SUCCESSFUL.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS5 ACCELERATOR 5Axx, SERIAL NUMBER
N/A.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS5 COPROCESSOR 5Czz, SERIAL NUMBER
ssssssss.
CSFM133I THERE ARE NO ACTIVE PKCS11 COPROCESSORS.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CSFCKDS IS NOT
INITIALIZED.
CSFM101E PKA KEY DATA SET, CSF.CSFPKDS IS NOT
INITIALIZED.
CSFM698I DOMAIN IN USE: 4
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE
AVAILABLE.
CSFM001I ICSF INITIALIZATION COMPLETE

Message CSFM111I is issued for each active Crypto Express coprocessor and accelerator.

Message CSFM122I is not issued when your system has any CEX3C coprocessors (with the Sept.
2011 or later LIC) online. The PKA callable services control will not be active. The availability of RSA
callable services depend on the status of the RSA master key. CSFM130I is issued when the RSA
master key is active and RSA callable services are available.

In System Log (without coprocessors and accelerators):

CSFM608I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM608I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM654I KEY ARCHIVING USE CONTROL IS DISABLED.
CSFM015I FIPS 140 SELF CHECKS FOR PKCS11 SERVICES SUCCESSFUL.
CSFM505I CRYPTOGRAPHY - THERE ARE NO ACTIVE CRYPTOGRAPHIC COPROCESSORS.
CSFM133I THERE ARE NO ACTIVE PKCS11 COPROCESSORS.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CSFCKDS IS NOT INITIALIZED.
CSFM101E PKA KEY DATA SET, CSF.CSFPKDS IS NOT INITIALIZED.
CSFM507I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC COPROCESSORS ONLINE.

428 z/OS: z/OS ICSF System Programmer's Guide

CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM698I DOMAIN IN USE: 4
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM001I ICSF INITIALIZATION COMPLETE

References
For information on using the Pass Phrase Initialization Utility and managing master keys, refer to z/OS
Cryptographic Services ICSF Administrator's Guide.

Completed

Step 7. Customizing TKE and loading master keys
If you are not using TKE, proceed to the next step.

Process
TKE Administrator's and Key Officers

• Define host IDs
• Define roles
• Define coprocessor authorities
• Load new DES master key (optional)
• Load new RSA master key (optional)
• Load new AES master key (optional)
• Load new ECC master key if running on z10 or newer servers with a CCA Crypto Express coprocessor

and the Sept. 2011 or later licensed internal code. (optional)

Note: If you have more than one coprocessor, repeat the process for each, unless groups have been
defined.

Responsible
ICSF Administrator

• Initialize CKDS and SET the DES and AES (if applicable) master keys
• Initialize PKDS and SET the RSA and ECC (if applicable) master keys
• Enable PKA Callable Services control

Note: The PKA Callable Services control is disabled if the system has a CEX3C or newer with the
Sept. 2011 or newer licensed internal code.

Where
TKE Workstation and ICSF Panels

Verify
In System Log (Systems with Crypto Express coprocessors and accelerators):

CSFM608I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM608I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM654I KEY ARCHIVING USE CONTROL IS DISABLED.
CSFM015I FIPS 140 SELF CHECKS FOR PKCS11 SERVICES
SUCCESSFUL.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS5 ACCELERATOR 5Axx, SERIAL NUMBER
N/A.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS5 COPROCESSOR 5Czz, SERIAL NUMBER
ssssssss.
CSFM133I THERE ARE NO ACTIVE PKCS11 COPROCESSORS.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CSFCKDS IS NOT
INITIALIZED.
CSFM101E PKA KEY DATA SET, CSF.CSFPKDS IS NOT
INITIALIZED.
CSFM698I DOMAIN IN USE: 4
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE

Appendix D. Helpful hints for ICSF first time startup 429

AVAILABLE.
CSFM001I ICSF INITIALIZATION COMPLETE

Message CSFM111I is issued for each active Crypto Express coprocessors and accelerators.

Message CSFM122I will not be issued when your system has any CEX3C or newer coprocessors (with
the Sept. 2011 or later LIC) online. The PKA callable services control will not be active. The availability
of RSA callable services will depend on the status of the RSA master key. CSFM130I is issued when
the RSA master key is active and RSA callable services are available.

In System Log (Systems without coprocessors or accelerators):

CSFM608I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM608I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM654I KEY ARCHIVING USE CONTROL IS DISABLED.
CSFM015I FIPS 140 SELF CHECKS FOR PKCS11 SERVICES SUCCESSFUL.
CSFM505I CRYPTOGRAPHY - THERE ARE NO ACTIVE CRYPTOGRAPHIC COPROCESSORS.
CSFM131E CRYPTOGRAPHY - DES SERVICES ARE NOT AVAILABLE.
CSFM131E CRYPTOGRAPHY - RSA SERVICES ARE NOT AVAILABLE.
CSFM131E CRYPTOGRAPHY - ECC SERVICES ARE NOT AVAILABLE.
CSFM131E CRYPTOGRAPHY - AES SERVICES ARE NOT AVAILABLE.
CSFM133I THERE ARE NO ACTIVE PKCS11 COPROCESSORS.
CSFM131E CRYPTOGRAPHY - SECURE KEY PKCS11 SERVICES ARE NOT AVAILABLE.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CSFCKDS IS NOT INITIALIZED.
CSFM101E PKA KEY DATA SET, CSF.CSFPKDS IS NOT INITIALIZED.
CSFM507I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC COPROCESSORS ONLINE.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM698I DOMAIN IN USE: 4
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM001I ICSF INITIALIZATION COMPLETE

References

For information on managing master keys, refer to z/OS Cryptographic Services ICSF Administrator's
Guide.

Completed

Step 8. CICS-ICSF Attachment Facility setup
If you are not using CICS, proceed to the next topic.

Process
Follow the instructions in Appendix C, “CICS-ICSF Attachment Facility,” on page 421 if desired.

Responsible
System Programmer

Where
Sample Jobs

References
Appendix C, “CICS-ICSF Attachment Facility,” on page 421

Completed

Step 9. Complete ICSF initialization
See “Steps for initializing ICSF” on page 31

Responsible
System Programmer

Where
Operator Console

430 z/OS: z/OS ICSF System Programmer's Guide

Completed

Commonly encountered ICSF first time setup/initialization
messages

These ICSF messages are commonly encountered during initialization and first time startup of ICSF.

• CSFM124I MASTER KEY mk ON coprocessor-name cii, SERIAL NUMBER nnnnnnn, NOT INITIALIZED -
The cryptographic coprocessor does not have the master key. When a master key is not set, then the
cryptographic coprocessor may not be used for operations with the master key until the system
administrator has provided the master key. This may be a normal situation for your installation. Have the
system administrator enter the correct master key if appropriate.

• CSFM410E ERROR IN OPTIONS DATA SET - ICSF could not interpret the options data set. Check the
CSF job output for diagnostic messages.

Appendix D. Helpful hints for ICSF first time startup 431

432 z/OS: z/OS ICSF System Programmer's Guide

Appendix E. Using AMS REPRO encryption

This appendix provides information on using IDCAMS REPRO ENCIPHER and DECIPHER options with
ICSF.

Steps for setting up ICSF
Perform these tasks to use the ENCIPHER and DECIPHER parameters with ICSF:

1. Define the key value that is used to encrypt and decrypt the data key. To define the key value, use one
of these ICSF key administrative options:

• Trusted Key Entry (TKE) workstation. For information about how to define the key value by using the
TKE workstation, see z/OS Cryptographic Services ICSF TKE Workstation User's Guide.

• Key generator utility program (KGUP). Use the KGUP panel ICSF - Create ADD, UPDATE, or DELETE
Key Statement to define the key value. For more information about how to use KGUP panels, see
z/OS Cryptographic Services ICSF Administrator's Guide.

Be aware of the following restrictions:

– The length of the data encryption key is limited to 8 bytes, or 56-bit DES. Triple DES support is not
available.

– Key labels are limited to 8 characters because of the fixed size of REPRO storage areas.
– The REPRO command's encryption algorithm variables are not documented, so you cannot use

them to write decryption applications on another system. Therefore, cross-platform exchange is
not possible.

2. Refresh ICSF's cryptographic key data set (CKDS) so that the key value can be used by REPRO.
3. Ensure that ICSF can support PCF macro calls by specifying COMPAT(YES) in the ICSF installation

options. For more information about how to specify ICSF installation options, see Chapter 2,
“Installation, initialization, and customization,” on page 11.

If you had to change the ICSF installation options, you must restart ICSF.
4. Run the REPRO ENCIPHER or DECIPHER job.

Restrictions: The REPRO command's encryption algorithm variables are not documented, so you cannot
use them to write decryption applications on another system. Therefore, cross-platform exchange is not
possible.

Recommendation: Do not specify the REPRO parameter PRIVATEKEY because it exposes the clear data
key value. Instead, specify either EXTERNALKEY or INTERNALKEY, and STOREDATAKEY.

© Copyright IBM Corp. 2007, 2021 433

434 z/OS: z/OS ICSF System Programmer's Guide

Appendix F. Systems without Cryptographic features

This topic describes the processing of ICSF without a cryptographic coprocessor or accelerator.

Applications and programs
Applications requiring secure cryptography using encrypted keys will not be able to execute without a
cryptographic coprocessor or accelerator. All cryptographic keys must be clear keys.

These applications and programs are not supported:

• Access Method Services Cryptographic option.
• CICS attachment facility.
• CKDS Conversion program.
• CSFEUTIL program for CKDS reencipher, refresh, and change master key functions.
• CSFPUTIL program for PKDS reencipher and refresh functions.
• Distributed Key Management System (DKMS).
• Key Generation Utility Program (KGUP) – Clear key can be generated.
• PCF applications.
• UDX (User Defined Extension) support.
• VTAM Session Level Encryption.
• If only the CPACF feature is installed, you will not be able to:

1. Set master keys.
2. Initialize the PKDS.
3. Store keys in the PKDS.

Callable services
These services are available when there are no cryptographic coprocessors or accelerators:

• Character/Nibble Conversion (CSNBXBC and CSNBXCB)
• Code Conversion (CSNBXEA and CSNBXAE)
• Control Vector Generate (CSNBCVG)
• Decode (CSNBDCO)
• Encode (CSNBECO)
• Field level decipher (CSNBFLD)
• Field level encipher (CSNBFLE)
• ICSF Query Facility (CSFIQF and CSFIQF6) - The only rule available without a coprocessor is ICSFSTAT.
• ICSF Query Facility2 (CSFIQF2 and CSFIQF26)
• ICSF Query Algorithm (CSFIQA)
• MDC Generate (CSNBMDG and CSNBMDG1)
• One-Way Hash Generate (CSNBOWH and CSNBOWH1)
• PKA Key Token Build (CSNDPKB)
• PKA Public Key Extract (CSNDPKX)
• PKCS #11 Derive multiple keys (CSFPDMK)
• PKCS #11 Derive key (CSFPDVK)

© Copyright IBM Corp. 2007, 2021 435

• PKCS #11 Get attribute value (CSFPGAV)
• PKCS #11 Generate key pair (CSFPGKP)
• PKCS #11 Generate secret key (CSFPGSK)
• PKCS #11 Generate MAC (CSFPHMG)
• PKCS #11 Verify MAC (CSFPHMV)
• PKCS #11 One-way hash generate (CSFPOWH)
• PKCS #11 Private key sign (CSFPPKS)
• PKCS #11 Public key verify (CSFPPKV)
• PKCS #11 Pseudo-random function (CSFPPRF)
• PKCS #11 Set attribute value (CSFPSAV)
• PKCS #11 Secret key decrypt (CSFPSKD)
• PKCS #11 Secret key encrypt (CSFPSKE)
• PKCS #11 Token record create (CSFPTRC)
• PKCS #11 Token record delete (CSFPTRD)
• PKCS #11 Token record list (CSFPTRL)
• PKCS #11 Unwrap key (CSFPUWK)
• PKCS #11 Wrap key (CSFPWPK)
• Random Number Generate (CSNBRNG) and Random Number Generate Long (CSNBRNGL)
• Symmetric Key Decipher (CSNBSYD and CSNBSYD1) - Only clear keys are supported.
• Symmetric Key Encipher (CSNBSYE and CSNBSYE1) - Only clear keys are supported.
• Symmetric MAC Generate (CSNBSMG, CSNBSMG1, CSNESMG, and CSNESMG1)
• Symmetric MAC Verify (CSNBSMV, CSNBSMV1, CSNESMV, and CSNESMV1)
• X9.9 Data Editing (CSNB9ED)

These services are available when there are no cryptographic coprocessors and there are accelerators:

• Digital Signature Verify (CSNDDSV)
• PKA Decrypt (CSNDPKD)
• PKA Encrypt (CSNDPKE) ZERO-PAD formatting only

Note:

1. Installation defined callable services are supported only if you're using clear keys and using one of the
supported callable services.

2. If running without an active PKCS #11 Cryptographic coprocessor, the PKCS #11 callable services are
limited to clear keys only.

ICSF setup and initialization
If starting ICSF without any cryptographic features:

CSFM608I A CKDS KEY STORE POLICY IS DEFINED.
CSFM608I A PKDS KEY STORE POLICY IS DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM654I KEY ARCHIVING USE CONTROL IS DISABLED.
CSFM015I FIPS 140 SELF CHECKS FOR PKCS11 SERVICES SUCCESSFUL.
CSFM505I CRYPTOGRAPHY - THERE ARE NO ACTIVE CRYPTOGRAPHIC COPROCESSORS.
CSFM133I THERE ARE NO ACTIVE PKCS11 COPROCESSORS.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CKDS IS NOT INITIALIZED.
CSFM101E PKA KEY DATA SET, CSF.PKDS IS NOT INITIALIZED.
CSFM507I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC COPROCESSORS ONLINE.

436 z/OS: z/OS ICSF System Programmer's Guide

CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM001I ICSF INITIALIZATION COMPLETE

If starting ICSF with a cryptographic accelerator:

CSFM608I A CKDS KEY STORE POLICY IS DEFINED.
CSFM608I A PKDS KEY STORE POLICY IS DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM654I KEY ARCHIVING USE CONTROL IS DISABLED.
CSFM015I FIPS 140 SELF CHECKS FOR PKCS11 SERVICES SUCCESSFUL.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS4 ACCELERATOR 4A00,
 SERIAL NUMBER N/A.
CSFM505I CRYPTOGRAPHY - THERE ARE NO ACTIVE CRYPTOGRAPHIC COPROCESSORS.
CSFM133I THERE ARE NO ACTIVE PKCS11 COPROCESSORS.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CKDS IS NOT INITIALIZED.
CSFM101E PKA KEY DATA SET, CSF.PKDS IS NOT INITIALIZED.
CSFM507I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC COPROCESSORS ONLINE.
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM001I ICSF INITIALIZATION COMPLETE

Secure Sockets Layer (SSL)
System SSL applications are supported. SSL defines methods for data encryption, server authentication,
message integrity, and client authentication for a TCP/IP connection. Security is provided on the link and
callable services have been enhanced for DES, TDES and SHA-1 services.

TKE workstation
The Trusted Key Entry (TKE) workstation is not available with this hardware configuration.

Appendix F. Systems without Cryptographic features 437

438 z/OS: z/OS ICSF System Programmer's Guide

Appendix G. Resource names for CCA and ICSF entry
points

Table 159. Resource names for CCA and ICSF entry points

Descriptive service
name

CCA entry point names ICSF entry point names SAF
resource
name

Callable
service exit
name

31-bit 64-bit 31-bit 64-bit

Authentication
Parameter Generate

CSNBAPG CSNEAPG CSFAPG CSFAPG6 CSFAPG CSFAPG

Cipher Text Translate2 CSNBCTT2 CSNECTT2 CSFCTT2 CSFCTT26 CSFCTT2 CSFCTT2

Cipher Text Translate2 CSNBCTT3 CSNECTT3 CSFCTT3 CSFCTT36 CSFCTT3 CSFCTT3

CKDS Key Record
Create

CSNBKRC CSNEKRC CSFKRC CSFKRC6 CSFKRC CSFKRC

CKDS Key Record
Create2

CSNBKRC2 CSNEKRC2 CSFKRC2 CSFKRC26 CSFKRC2 CSFKRC2

CKDS Key Record
Delete

CSNBKRD CSNEKRD CSFKRD CSFKRD6 CSFKRD CSFKRD

CKDS Key Record
Read

CSNBKRR CSNEKRR CSFKRR CSFKRR6 CSFKRR CSFKRR

CKDS Key Record
Read2

CSNBKRR2 CSNEKRR2 CSFKRR2 CSFKRR26 CSFKRR2 CSFKRR2

CKDS Key Record
Write

CSNBKRW CSNEKRW CSFKRW CSFKRW6 CSFKRW CSFKRW

CKDS Key Record
Write2

CSNBKRW2 CSNEKRW2 CSFKRW2 CSFKRW26 CSFKRW2 CSFKRW2

Clear Key Import CSNBCKI CSNECKI CSFCKI CSFCKI6 CSFCKI CSFCKI

Clear PIN Encrypt CSNBCPE CSNECPE CSFCPE CSFCPE6 CSFCPE CSFCPE

Clear PIN Generate CSNBPGN CSNEPGN CSFPGN CSFPGN6 CSFPGN CSFPGN

Clear PIN Generate
Alternate

CSNBCPA CSNECPA CSFCPA CSFCPA6 CSFCPA CSFCPA

Control Vector
Generate

CSNBCVG CSNECVG CSFCVG CSFCVG6 N/A N/A

Control Vector
Translate

CSNBCVT CSNECVT CSFCVT CSFCVT6 CSFCVT CSFCVT

Coordinated KDS
Administration

N/A N/A CSFCRC CSFCRC6 CSFCRC N/A

Cryptographic Usage
Statistic

N/A N/A CSFSTAT CSFSTAT6 N/A N/A

Cryptographic
Variable Encipher

CSNBCVE CSNECVE CSFCVE CSFCVE6 CSFCVE CSFCVE

© Copyright IBM Corp. 2007, 2021 439

Table 159. Resource names for CCA and ICSF entry points (continued)

Descriptive service
name

CCA entry point names ICSF entry point names SAF
resource
name

Callable
service exit
name

CVV Key Combine CSNBCKC CSNECKC CSFCKC CSFCKC6 CSFCKC CSFCKC

Data Key Export CSNBDKX CSNEDKX CSFDKX CSFDKX6 CSFDKX CSFDKX

Data Key Import CSNBDKM CSNEDKM CSFDKM CSFDKM6 CSFDKM CSFDKM

Decipher CSNBDEC CSNEDEC CSFDEC CSFDEC6 CSFDEC CSFDEC

Decipher CSNBDEC1 CSNEDEC1 CSFDEC1 CSFDEC16 CSFDEC1 CSFDEC1

Decode CSNBDCO CSNEDCO CSFDCO CSFDCO6 CSFDCO CSFDCO

Derive ICC MK CSNBDCM CSNEDCM CSFDCM CSFDCM6 CSFDCM CSFDCM

Derive Session Key CSNBDSK CSNEDSK CSFDSK CSFDSK6 CSFDSK CSFDSK

Digital Signature
Generate

CSNDDSG CSNFDSG CSFDSG CSFDSG6 CSFDSG CSFDSG

Digital Signature
Verify

CSNDDSV CSNFDSV CSFDSV CSFDSV6 CSFDSV CSFDSV

Diversified Key
Generate

CSNBDKG CSNEDKG CSFDKG CSFDKG6 CSFDKG CSFDKG

Diversified Key
Generate2

CSNBDKG2 CSNEDKG2 CSFDKG2 CSFDKG26 CSFDKG2 CSFDKG2

Diversify Directed Key CSNBDDK CSNEDDK CSFDDK CSFDDK6 CSFDDK CSFDDK

DK Deterministic PIN
Generate

CSNBDDPG CSNEDDPG CSFDDPG CSFDDPG6 CSFDDPG CSFDDPG

DK Migrate PIN CSNBDMP CSNEDMP CSFDMP CSFDMP6 CSFDMP CSFDMP

DK PAN Modify in
Transaction

CSNBDPMT CSNEDPMT CSFDPMT CSFDPMT6 CSFDPMT CSFDPMT

DK PAN Translate CSNBDPT CSNEDPT CSFDPT CSFDPT6 CSFDPT CSFDPT

DK PIN Change CSNBDPC CSNEDPC CSFDPC CSFDPC6 CSFDPC CSFDPC

DK PIN Verify CSNBDPV CSNEDPV CSFDPV CSFDPV6 CSFDPV CSFDPV

DK PRW Card Number
Update

CSNBDPNU CSNEDPNU CSFDPNU CSFDPNU6 CSFDPNU CSFDPNU

DK PRW Card Number
Update2

CSNBDCU2 CSNBECU2 CSFDCU2 CSFDCU26 CSFDCU2 CSFDCU2

DK PRW CMAC
Generate

CSNBDPCG CSNEDPCG CSFDPCG CSFDPCG6 CSFDPCG CSFDPCG

DK Random PIN
Generate

CSNBDRPG CSNEDRPG CSFDRPG CSFDRPG6 CSFDRPG CSFDRPG

DK Random PIN
Generate2

CSNBDRG2 CSNBERG2 CSFDRG2 CSFDRG26 CSFDRG2 CSFDRG2

DK Regenerate PRW CSNBDRP CSNEDRP CSFDRP CSFDRP6 CSFDRP CSFDRP

ECC Diffie-Hellman CSNDEDH CSNFEDH CSFEDH CSFEDH6 CSFEDH CSFEDH

440 z/OS: z/OS ICSF System Programmer's Guide

Table 159. Resource names for CCA and ICSF entry points (continued)

Descriptive service
name

CCA entry point names ICSF entry point names SAF
resource
name

Callable
service exit
name

EMV Scripting Service CSNBESC CSNEESC CSFESC CSFESC6 CSFESC CSFESC

EMV Transaction
(ARQC/ARPC) Service

CSNBEAC CSNEEAC CSFEAC CSFEAC6 CSFEAC CSFEAC

EMV Verification
Functions

CSNBEVF CSNEEVF CSFEVF CSFEVF6 CSFEVF CSFEVF

Encipher CSNBENC CSNEENC CSFENC CSFENC6 CSFENC CSFENC

Encipher CSNBENC1 CSNEENC1 CSFENC1 CSFENC16 CSFENC1 CSFENC1

Encode CSNBECO CSNEECO CSFECO CSFECO6 CSFECO CSFECO

Encrypted PIN
Generate

CSNBEPG CSNEEPG CSFEPG CSFEPG6 CSFEPG CSFEPG

Encrypted PIN
Translate

CSNBPTR CSNEPTR CSFPTR CSFPTR6 CSFPTR CSFPTR

Encrypted PIN
Translate2

CSNBPTR2 CSNEPTR2 CSFPTR2 CSFPTR26 CSFPTR2 CSFPTR2

Encrypted PIN
Translate Enhanced

CSNBPTRE CSNEPTRE CSFPTRE CSFPTRE6 CSFPTRE CSFPTRE

Encrypted PIN Verify CSNBPVR CSNEPVR CSFPVR CSFPVR6 CSFPVR CSFPVR

Field Level Decipher CSNBFLD CSNEFLD CSFFLD CSFFLD6 N/A N/A

Field Level Encipher CSNBFLE CSNEFLE CSFFLE CSFFLE6 N/A N/A

FPE Decipher CSNBFPED CSNEFPED CSFFPED CSFFPED6 CSFFPED CSFFPED

FPE Encipher CSNBFPEE CSNEFPEE CSFFPEE CSFFPEE6 CSFFPEE CSFFPEE

FPE Translate CSNBFPET CSNEFPET CSFFPET CSFFPET6 CSFFPET CSFFPET

Generate Issuer MK CSNBGIM CSNEGIM CSFGIM CSFGIM6 CSFGIM CSFGIM

HMAC Generate CSNBHMG CSNEHMG CSFHMG CSFHMG6 CSFHMG CSFHMG

HMAC Generate CSNBHMG1 CSNEHMG1 CSFHMG1 CSFHMG16 CSFHMG1 CSFHMG1

HMAC Verify CSNBHMV CSNEHMV CSFHMV CSFHMV6 CSFHMV CSFHMV

HMAC Verify CSNBHMV1 CSNEHMV1 CSFHMV1 CSFHMV16 CSFHMV1 CSFHMV1

ICSF Multi-Purpose
Service

N/A N/A CSFMPS CSFMPS6 CSFMPS CSFMPS

ICSF Query Algorithm N/A N/A CSFIQA CSFIQA6 CSFIQA N/A

ICSF Query Facility N/A N/A CSFIQF CSFIQF6 CSFIQF N/A

ICSF Query Facility2 N/A N/A CSFIQF2 CSFIQF26 N/A CSFIQF2

Key Data Set List N/A N/A CSFKDSL CSFKDSL6 CSFKDSL CSFKDSL

Key Data Set
Metadata Read

N/A N/A CSFKDMR CSFKDMR6 CSFKDMR CSFKDMR

Appendix G. Resource names for CCA and ICSF entry points 441

Table 159. Resource names for CCA and ICSF entry points (continued)

Descriptive service
name

CCA entry point names ICSF entry point names SAF
resource
name

Callable
service exit
name

Key Data Set
Metadata Write

N/A N/A CSFKDMW CSFKDMW6 CSFKDMW CSFKDMW

Key Data Set Record
Retrieve

N/A N/A CSFRRT CSFRRT6 CSFRRT
(see notes)

N/A

Key Data Set Update N/A N/A CSFKDU CSFKDU6 CSFKDU
(see notes)

N/A

Key Encryption
Translate

CSNBKET CSNEKET CSFKET CSFKET6 CSFKET CSFKET

Key Export CSNBKEX CSNEKEX CSFKEX CSFKEX6 CSFKEX CSFKEX

Key Generate CSNBKGN CSNEKGN CSFKGN CSFKGN6 CSFKGN CSFKGN

Key Generate2 CSNBKGN2 CSNEKGN2 CSFKGN2 CSFKGN26 CSFKGN2 CSFKGN2

Key Import CSNBKIM CSNEKIM CSFKIM CSFKIM6 CSFKIM CSFKIM

Key Part Import CSNBKPI CSNEKPI CSFKPI CSFKPI6 CSFKPI CSFKPI

Key Part Import2 CSNBKPI2 CSNEKPI2 CSFKPI2 CSFKPI26 CSFKPI2 CSFKPI2

Key Test CSNBKYT CSNEKYT CSFKYT CSFKYT6 CSFKYT CSFKYT

Key Test2 CSNBKYT2 CSNEKYT2 CSFKYT2 CSFKYT26 CSFKYT2 CSFKYT2

Key Test Extended CSNBKYTX CSNEKYTX CSFKYTX CSFKYTX6 CSFKYTX CSFKYTX

Key Token Build CSNBKTB CSNEKTB CSFKTB CSFKTB6 N/A N/A

Key Token Build2 CSNBKTB2 CSNEKTB2 CSFKTB2 CSFKTB26 N/A N/A

Key Token Wrap N/A N/A CSFWRP CSFWRP6 CSFWRP N/A

Key Translate CSNBKTR CSNEKTR CSFKTR CSFKTR6 CSFKTR CSFKTR

Key Translate2 CSNBKTR2 CSNEKTR2 CSFKTR2 CSFKTR26 CSFKTR2 CSFKTR2

MAC Generate CSNBMGN CSNEMGN CSFMGN CSFMGN6 CSFMGN CSFMGN

MAC Generate CSNBMGN1 CSNEMGN1 CSFMGN1 CSFMGN16 CSFMGN1 CSFMGN1

MAC Generate2 CSNBMGN2 CSNEMGN2 CSFMGN2 CSFMGN26 CSFMGN2 CSFMGN2

MAC Generate2 CSNBMGN3 CSNEMGN3 CSFMGN3 CSFMGN36 CSFMGN3 CSFMGN3

MAC Verify CSNBMVR CSNEMVR CSFMVR CSFMVR6 CSFMVR CSFMVR

MAC Verify CSNBMVR1 CSNEMVR1 CSFMVR1 CSFMVR16 CSFMVR1 CSFMVR1

MAC Verify2 CSNBMVR2 CSNEMVR2 CSFMVR2 CSFMVR26 CSFMVR2 CSFMVR2

MAC Verify2 CSNBMVR3 CSNEMVR3 CSFMVR3 CSFMVR36 CSFMVR3 CSFMVR3

MDC Generate CSNBMDG CSNEMDG CSFMDG CSFMDG6 CSFMDG CSFMDG

MDC Generate CSNBMDG1 CSNEMDG1 CSFMDG1 CSFMDG16 CSFMDG1 CSFMDG1

Multiple Clear Key
Import

CSNBCKM CSNECKM CSFCKM CSFCKM6 CSFCKM CSFCKM

442 z/OS: z/OS ICSF System Programmer's Guide

Table 159. Resource names for CCA and ICSF entry points (continued)

Descriptive service
name

CCA entry point names ICSF entry point names SAF
resource
name

Callable
service exit
name

Multiple Secure Key
Import

CSNBSKM CSNESKM CSFSKM CSFSKM6 CSFSKM CSFSKM

One-Way Hash
Generate

CSNBOWH CSNEOWH CSFOWH CSFOWH6 CSFOWH CSFOWH

One-Way Hash
Generate

CSNBOWH1 CSNEOWH1 CSFOWH1 CSFOWH16 CSFOWH1 CSFOWH1

PCI Interface N/A N/A CSFPCI CSFPCI6 CSFPCI CSFPCI

PIN Change/Unblock CSNBPCU CSNEPCU CSFPCU CSFPCU6 CSFPCU CSFPCU

PKA Decrypt CSNDPKD CSNFPKD CSFPKD CSFPKD6 CSFPKD CSFPKD

PKA Encrypt CSNDPKE CSNFPKE CSFPKE CSFPKE6 CSFPKE CSFPKE

PKA Key Generate CSNDPKG CSNFPKG CSFPKG CSFPKG6 CSFPKG CSFPKG

PKA Key Import CSNDPKI CSNFPKI CSFPKI CSFPKI6 CSFPKI CSFPKI

PKA Key Token Build CSNDPKB CSNFPKB CSFPKB CSFPKB6 N/A N/A

PKA Key Token
Change

CSNDKTC CSNFKTC CSFPKTC CSFPKTC6 CSFPKTC CSFPKTC

PKA Key Translate CSNDPKT CSNFPKT CSFPKT CSFPKT6 CSFPKT CSFPKT

PKA Public Key
Extract

CSNDPKX CSNFPKX CSFPKX CSFPKX6 CSFPKX CSFPKX

PKCS #11 Derive Key N/A N/A CSFPDVK CSFPDVK6 CSF1DVK1 N/A

PKCS #11 Derive
Multiple Keys

N/A N/A CSFPDMK CSFPDMK6 CSF1DMK1 N/A

PKCS #11 Generate
Keyed MAC

N/A N/A CSFPHMG CSFPHMG6 CSF1HMG1 N/A

PKCS #11 Generate
Key Pair

N/A N/A CSFPGKP CSFPGKP6 CSF1GKP1 N/A

PKCS #11 Generate
Secret Key

N/A N/A CSFPGSK CSFPGSK6 CSF1GSK1 N/A

PKCS #11 Get
Attribute Value

N/A N/A CSFPGAV CSFPGAV6 CSF1GAV1 N/A

PKCS #11 One-Way
Hash, Sign, or Verify

N/A N/A CSFPOWH CSFPOWH6 CSFOWH N/A

PKCS #11 Private Key
Sign

N/A N/A CSFPPKS CSFPPKS6 CSF1PKS1 N/A

PKCS #11 Private Key
Structure Decrypt

N/A N/A CSFPPD2 CSFPPD26 CSFPKD N/A

PKCS #11 Private Key
Structure Sign

N/A N/A CSFPPS2 CSFPPS26 CSFDSG N/A

Appendix G. Resource names for CCA and ICSF entry points 443

Table 159. Resource names for CCA and ICSF entry points (continued)

Descriptive service
name

CCA entry point names ICSF entry point names SAF
resource
name

Callable
service exit
name

PKCS #11 Pseudo-
Random Function

N/A N/A CSFPPRF CSFPPRF6 CSFRNG N/A

PKCS #11 Public Key
Structure Encrypt

N/A N/A CSFPPE2 CSFPPE26 CSFPKE N/A

PKCS #11 Public Key
Structure Verify

N/A N/A CSFPPV2 CSFPPV26 CSFDSV N/A

PKCS #11 Public Key
Verify

N/A N/A CSFPPKV CSFPPKV6 CSF1PKV1 N/A

PKCS #11 Secret Key
Decrypt

N/A N/A CSFPSKD CSFPSKD6 CSF1SKD1 N/A

PKCS #11 Secret Key
Encrypt

N/A N/A CSFPSKE CSFPSKE6 CSF1SKE1 N/A

PKCS #11 Set
Attribute Value

N/A N/A CSFPSAV CSFPSAV6 CSF1SAV1 N/A

PKCS #11 Token
Record Create

N/A N/A CSFPTRC CSFPTRC6 CSF1TRC1 N/A

PKCS #11 Token
Record Delete

N/A N/A CSFPTRD CSFPTRD6 CSF1TRD1 N/A

PKCS #11 Token
Record List

N/A N/A CSFPTRL CSFPTRL6 CSF1TRL1 N/A

PKCS #11 Unwrap
Key

N/A N/A CSFPUWK CSFPUWK6 CSF1UWK1 N/A

PKCS #11 Verify
Keyed MAC

N/A N/A CSFPHMV CSFPHMV6 CSF1HMV1 N/A

PKCS #11 Wrap Key N/A N/A CSFPWPK CSFPWPK6 CSF1WPK1 N/A

PKDS Key Record
Create

CSNDKRC CSNFKRC CSFPKRC CSFPKRC6 CSFPKRC CSFPKRC

PKDS Key Record
Delete

CSNDKRD CSNFKRD CSFPKRD CSFPKRD6 CSFPKRD CSFPKRD

PKDS Key Record
Read

CSNDKRR CSNFKRR CSFPKRR CSFPKRR6 CSFPKRR CSFPKRR

PKDS Key Record
Read2

CSNDKRR2 CSNFKRR2 CSFPRR2 CSFPRR26 CSFPRR2 CSFPRR2

PKDS Key Record
Write

CSNDKRW CSNFKRW CSFPKRW CSFPKRW6 CSFPKRW CSFPKRW

Prohibit Export CSNBPEX CSNEPEX CSFPEX CSFPEX6 CSFPEX CSFPEX

Prohibit Export
Extended

CSNBPEXX CSNEPEXX CSFPEXX CSFPEXX6 CSFPEXX CSFPEXX

Public Infrastructure
Certificate

CSNDPIC CSNFPIC CSFPIC CSFPIC6 CSFPIC CSFPIC

444 z/OS: z/OS ICSF System Programmer's Guide

Table 159. Resource names for CCA and ICSF entry points (continued)

Descriptive service
name

CCA entry point names ICSF entry point names SAF
resource
name

Callable
service exit
name

Random Number
Generate

CSNBRNG CSNERNG CSFRNG CSFRNG6 CSFRNG CSFRNG

Random Number
Generate

CSNBRNGL CSNERNGL CSFRNGL CSFRNGL6 CSFRNGL CSFRNGL

Recover PIN from
Offset

CSNBPFO CSNEPFO CSFPFO CSFPFO6 CSFPFO CSFPFO

Remote Key Export CSNDRKX CSNFRKX CSFRKX CSFRKX6 CSFRKX CSFRKX

Restrict Key Attribute CSNBRKA CSNERKA CSFRKA CSFRKA6 CSFRKA CSFRKA

Retained Key Delete CSNDRKD CSNFRKD CSFRKD CSFRKD6 CSFRKD CSFRKD

Retained Key List CSNDRKL CSNFRKL CSFRKL CSFRKL6 CSFRKL CSFRKL

SAF ACEE Selection N/A N/A CSFACEE CSFACEE6 N/A (see
notes)

N/A (see
notes)

Secure Key Import CSNBSKI CSNESKI CSFSKI CSFSKI6 CSFSKI CSFSKI

Secure Key Import2 CSNBSKI2 CSNESKI2 CSFSKI2 CSFSKI26 CSFSKI2 CSFSKI2

Secure Messaging for
Keys

CSNBSKY CSNESKY CSFSKY CSFSKY6 CSFSKY CSFSKY

Secure Messaging for
PINs

CSNBSPN CSNESPN CSFSPN CSFSPN6 CSFSPN CSFSPN

SET Block Compose CSNDSBC CSNFSBC CSFSBC CSFSBC6 CSFSBC CSFSBC

SET Block Decompose CSNDSBD CSNFSBD CSFSBD CSFSBD6 CSFSBD CSFSBD

Symmetric Algorithm
Decipher

CSNBSAD CSNESAD CSFSAD CSFSAD6 CSFSAD N/A

Symmetric Algorithm
Decipher

CSNBSAD1 CSNESAD1 CSFSAD1 CSFSAD16 CSFSAD1 N/A

Symmetric Algorithm
Encipher

CSNBSAE CSNESAE CSFSAE CSFSAE6 CSFSAE N/A

Symmetric Algorithm
Encipher

CSNBSAE1 CSNESAE1 CSFSAE1 CSFSAE16 CSFSAE1 N/A

Symmetric Key
Decipher

CSNBSYD CSNESYD CSFSYD CSFSYD6 N/A N/A

Symmetric Key
Decipher

CSNBSYD1 CSNESYD1 CSFSYD1 CSFSYD16 N/A N/A

Symmetric Key
Encipher

CSNBSYE CSNESYE CSFSYE CSFSYE6 N/A N/A

Symmetric Key
Encipher

CSNBSYE1 CSNESYE1 CSFSYE1 CSFSYE16 N/A N/A

Symmetric Key Export CSNDSYX CSNFSYX CSFSYX CSFSYX6 CSFSYX CSFSYX

Appendix G. Resource names for CCA and ICSF entry points 445

Table 159. Resource names for CCA and ICSF entry points (continued)

Descriptive service
name

CCA entry point names ICSF entry point names SAF
resource
name

Callable
service exit
name

Symmetric Key Export
with Data

CSNDSXD CSNFSXD CSFSXD CSFSXD6 CSFSXD CSFSXD

Symmetric Key
Generate

CSNDSYG CSNFSYG CSFSYG CSFSYG6 CSFSYG CSFSYG

Symmetric Key
Import

CSNDSYI CSNFSYI CSFSYI CSFSYI6 CSFSYI CSFSYI

Symmetric Key
Import2

CSNDSYI2 CSNFSYI2 CSFSYI2 CSFSYI26 CSFSYI2 CSFSYI2

Symmetric MAC
Generate

CSNBSMG CSNESMG CSFSMG CSFSMG6 N/A CSFSMG

Symmetric MAC
Generate

CSNBSMG1 CSNESMG1 CSFSMG1 CSFSMG16 N/A CSFSMG1

Symmetric MAC Verify CSNBSMV CSNESMV CSFSMV CSFSMV6 N/A CSFSMV

Symmetric MAC Verify CSNBSMV1 CSNESMV1 CSFSMV1 CSFSMV16 N/A CSFSMV1

TR-31 Export CSNBT31X CSNET31X CSFT31X CSFT31X6 CSFT31X CSFT31X

TR-31 Import CSNBT31I CSNET31I CSFT31I CSFT31I6 CSFT31I CSFT31I

TR-31 Optional Data
Build

CSNBT31O CSNET31O CSFT31O CSFT31O6 N/A N/A

TR-31 Optional Data
Read

CSNBT31R CSNET31R CSFT31R CSFT31R6 N/A N/A

TR-31 Parse CSNBT31P CSNET31P CSFT31P CSFT31P6 N/A N/A

TR-34 Bind-Begin CSNDT34B CSNFT34B CSFT34B CSFT34B6 CSFT34B CSFT34B

TR-34 Bind-Complete CSNDT34C CSNFT34C CSFT34C CSFT34C6 CSFT34C CSFT34C

TR-34 Key
Distribution

CSNDT34D CSNFT34D CSFT34D CSFT34D6 CSFT34D CSFT34D

TR-34 Key Receive CSNDT34R CSNFT34R CSFT34R CSFT34R6 CSFT34R CSFT34R

Transaction Validation CSNBTRV CSNETRV CSFTRV CSFTRV6 CSFTRV CSFTRV

Trusted Block Create CSNDTBC CSNFTBC CSFTBC CSFTBC6 CSFTBC CSFTBC

Unique Key Derive CSNBUKD CSNEUKD CSFUKD CSFUKD6 CSFUKD CSFUKD

VISA CVV Service
Generate

CSNBCSG CSNECSG CSFCSG CSFCSG6 CSFCSG CSFCSG

VISA CVV Service
Verify

CSNBCSV CSNECSV CSFCSV CSFCSV6 CSFCSV CSFCSV

Notes:

• Key Data Set Update (CSFKDU and CSFKDU6) and Key Data Set Record Retrieve (CSFRRT and CSFRRT6)
will only be granted access with an explicitly defined covering profile.

446 z/OS: z/OS ICSF System Programmer's Guide

• SAF ACEE Selection (CSFACEE and CSFACEE6) does not have SAF checking or callable service exit
support on its own. The service specified in the service_name parameter determines SAF checking and
callable service exit capability.

• N/A is shown in a column when the callable service:

– Does not have CCA entry points (CCA entry point names columns).
– Does not call SAF to determine access to a CSFSERV resource (SAF resource name column).
– Does not allow a callable service exit to be defined (Callable service exit name column).

• 1 CSF1xxx is just another name for the CSFPxxx service.

Appendix G. Resource names for CCA and ICSF entry points 447

448 z/OS: z/OS ICSF System Programmer's Guide

Appendix H. Accessibility

Accessible publications for this product are offered through IBM Documentation (www.ibm.com/docs/en/
zos).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to the
Contact the z/OS team web page (www.ibm.com/systems/campaignmail/z/zos/contact_z) or use the
following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited vision
use software products successfully. The accessibility features in z/OS can help users do the following
tasks:

• Run assistive technology such as screen readers and screen magnifier software.
• Operate specific or equivalent features by using the keyboard.
• Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user interfaces found in z/OS.
Consult the product information for the specific assistive technology product that is used to access z/OS
interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use
TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes
the default settings for the PF keys.

• z/OS TSO/E Primer
• z/OS TSO/E User's Guide
• z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM Documentation with a
screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or more
syntax elements are always present together (or always absent together), they can appear on the same
line because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers
correctly, make sure that the screen reader is set to read out punctuation. All the syntax elements that
have the same dotted decimal number (for example, all the syntax elements that have the number 3.1)

© Copyright IBM Corp. 2007, 2021 449

https://www.ibm.com/docs/en/zos
https://www.ibm.com/docs/en/zos
http://www.ibm.com/systems/campaignmail/z/zos/contact_z

are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax
can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with
dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all
the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the
syntax elements. Occasionally, these words and symbols might occur at the beginning of the element
itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the
backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the
syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the
format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE
indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the
syntax just before the items they separate. These characters can appear on the same line as each item, or
on a separate line with the same dotted decimal number as the relevant items. The line can also show
another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1
LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax
elements, the elements must be separated by a comma. If no separator is given, assume that you use a
blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The
string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the
line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.
? indicates an optional syntax element

The question mark (?) symbol indicates an optional syntax element. A dotted decimal number
followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding
dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax
element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax
element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted decimal
number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the
syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number
followed by the ! symbol and a syntax element indicate that the syntax element is the default option
for all syntax elements that share the same dotted decimal number. Only one of the syntax elements
that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines 2?
FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the
FILE keyword. In the example, if you include the FILE keyword, but do not specify an option, the
default option KEEP is applied. A default option also applies to the next higher dotted decimal
number. In this example, if the FILE keyword is omitted, the default FILE(KEEP) is used. However, if
you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option
KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax element can be used zero
or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data
area, you know that you can include one data area, more than one data area, or no data area. If you
hear the lines 3* , 3 HOST, 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Notes:

450 z/OS: z/OS ICSF System Programmer's Guide

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted
decimal number, you can repeat that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal
number, you can use more than one item from the list, but you cannot use the items more than
once each. In the previous example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal
number followed by the + symbol indicates that the syntax element must be included one or more
times. That is, it must be included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and
2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the +
symbol can repeat a particular item if it is the only item with that dotted decimal number. The +
symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix H. Accessibility 451

452 z/OS: z/OS ICSF System Programmer's Guide

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in only
the HTML plug-in output for IBM Documentation. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 2007, 2021 453

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or

454 z/OS: z/OS ICSF System Programmer's Guide

reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details in
the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMSdfp, JES2, JES3, and MVS™, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease if
a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those

Notices 455

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).

456 z/OS: z/OS ICSF System Programmer's Guide

http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/legal/copytrade.shtml

Index

A
abends 149
access control checking

udx 207
Access Method Services Cryptographic Option

and ICSF 136
accessibility

contact IBM 449
features 449

activity report
defining on a DD statement 230
description 230

adding a regional cryptographic server
SETICSF command 131

addressing mode
no restrictions on ICSF's caller 136

AMS DEFINE CLUSTER command 15, 18, 20
AMS IMPORT/EXPORT commands 15, 18, 20
AMS REPRO command 15, 18, 20
AMS REPRO encryption 219
ARM

Automatic Restart Manager 100
assistive technologies 449
Automatic Restart Manager

ARM 100

B
BEGIN installation option 38

C
callable services exit

CSF_SERVICE_EXIT 178
CCA entry points

resource names 439
changing coprocessor or accelerator status

SETICSF command 131
changing parameters in installation options data set

specifying option parameters and values 38
changing the master key in compatibility or coexistence
mode 221
CHECKAUTH installation option 39
choosing compatibility modes during migration 221
CICS

WAITLIST installation option 52
CICS wait list 95
CICS-ICSF Attachment Facility

installing 421
CICSAUDIT installation option 39
CIPHER macro

SVC description 8
CKDS

create 14
primary space required 14
secondary space required 15

CKDS (cryptographic key data set)
conversion from PCF CKDS to ICSF CKDS 222
creating 15
description 6
header record format 235–237
record format 237–239, 307, 308

CKDS entry retrieval installation exit
environment 180
input 181
installing 181
purpose and use 180
return codes 182

CKDS refresh
SMF record type 82 139

CKDSN installation option 40
CKTAUTH 40
coexistence mode

changing the master key 220, 221
description 219, 220

coexistence, definition 54
command

syntax diagrams 102
command syntax notation 102
COMPAT installation option 40, 219
compatibility mode

and the Access Method Services Cryptographic Option
136
changing the master key 219, 221
description 219

COMPENC installation option 40
compliance warning event

SMF record type 82 146
compliance warnings 96
COMPLIANCEWARN installation option 40
component trace 148
configure on/off cryptographic coprocessors 126
contact

z/OS 449
controlling access to CSFDUTIL 147
controlling access to secure tokens 147
controlling access to the callable services 147
controlling access to the cryptographic keys 147
controlling access to the key generator utility program 147
controlling the program environment 146
conversion program

activity report 230
bypassing entries 225
converting key types 227
data sets 230
including information in a key entry 226
installation exit 223
JCL for submitting 229
override file 223
running 229

conversion program installation exit
PCF

purpose and use 183

Index 457

conversion program installation exit (continued)
return codes 185

converting a PCF CKDS 222
Converting to KDSR format 84
CP Assist for Cryptographic Functions

description 1
Creating an

creating an ICSF CTRACE Configuration Data Set 25
Creating an ICSF CTRACE Configuration Data Set 25

creating the CKDS
allocating space for the CKDS 14
reading the CKDS into storage 31
using the AMS DEFINE CLUSTER command 15

creating the installation options data set
guidelines 23

creating the PKDS
allocating space for the PKDS 18

creating the startup procedure
specifying the installation options data set 27

creating the TKDS
allocating space for the TKDS 20

creation of 15
crypto education xxiii
Crypto Express2 Coprocessor

description 1
cryptographic communication vector table 357
cryptographic communication vector table extension 359
Cryptographic Coprocessor clear master key entry

SMF record type 82 140
cryptographic coprocessor retained key create or delete

SMF record type 82 140
cryptographic coprocessor timing

SMF record type 82 141
cryptographic coprocessor TKE command request or reply

SMF record type 82 141
cryptographic coprocessors

bringing offline 126
bringing online 126
disabling 126

csf 27
CSF_SERVICE_EXIT 178
csf2 28
CSFAPRPC processing routine 208
CSFCKDS exit 180
CSFCONVX exit 182
CSFESECI exit 189
CSFESECK exit 189
CSFESECS exit 189
CSFESECT exit 189
CSFEXIT1 exit 162
CSFEXIT2 exit 162
CSFEXIT3 exit 162
CSFEXIT4 exit 162
CSFEXIT5 exit 162
CSFKGUP exit 193
CSFPARM data set 27
CSFPRM00 24
CSFSRRW exit 185
CSFVINP data set 230
CSFVNEW data set 230
CSFVOVR data set 230
CSFVRPT data set 230
CSFVSRC data set 230
CTRACE installation option 41

D
DEFAULTWRAP installation option 41
DEFINE CLUSTER command 15, 18, 20
defining conversion program data sets 230
disabling cryptographic coprocessors 126
DISPLAY command

displaying cryptographic coprocessor status 131
Display ICSF command 104
displaying cryptographic coprocessor status

DISPLAY command 131
DOMAIN installation option 42
duplicate key tokens

SMF record type 82 143
dynamic CKDS update

SMF record type 82 140
dynamic PKDS update

SMF record type 82 140
dynamic service update 86, 132, 133, 135

E
ECC token

associated data format for 342
EMK macro

SVC description 8
END installation option 42
ENF signals 154
event recording 137
exit

CKDS entry retrieval installation exit 158, 180
description 157
entry and return specifications 159
identifier on ICSF 42
key generator utility program installation exit 159, 193
mainline installation exits 157, 162
PCF conversion program installation exit 158, 182
security installation exits 189
service installation exits 158, 170
single-record, read-write installation exit 158, 185

EXIT installation option 42
exit name table 167
external key token

PKA
RSA private 309

F
feedback xxv
FIPSMODE installation option 43
FMID

applicable z/OS releases 5
hardware 5
servers 5

formatting control blocks
using IPCS 150

functions not supported 95

G
GENKEY macro

SVC description 8

458 z/OS: z/OS ICSF System Programmer's Guide

H
hash services 58

I
ICSF

dispatching priority 52, 136
ICSF (Integrated Cryptographic Service Facility)

CSFSMF82 mapping macro 367
record type 82 367

ICSF CTRACE Configuration Data Set 25
ICSF entry points

resource names 439
ICSF initialization

SMF record type 82 139
ICSF installation options data set

deprecated parameters 57
ICSF migration actions 54
ICSF operator commands

Display ICSF 104
SETICSF 113

icsf sysplex group
SMF record type 82 142

ICSFMIG77A1_COPROCESSOR _ACTIVE 54
ICSFMIG77A1_TKDS_OBJECT 55
initializing ICSF

creating the PKDS 18
creating the TKDS 21
creation of 18, 21
selecting ICSF startup options

creating the installation options data set 23
creating the startup procedure 27

starting ICSF 31
installation option keyword

CHECKAUTH 39
CICSAUDIT 39
CKDSN 40
CKTAUTH 40
COMPAT 40, 219
COMPENC 40
COMPLIANCEWARN 40
CTRACE 41
DEFAULTWRAP 41
DOMAIN 42
EXIT 42
FIPSMODE 43
KEYAUTH 46
MASTERKCVLEN 46
MAXLEN 46
MAXSESSOBJECTS 46
PKDSCACHE 46
PKDSN 46
REASONCODES 47
SERVICE 48
SERVICELIBS 48
SERVSCSFMOD0 49
SERVSIEALNKE 49
SSM 49
SYSPLEXCKDS 50
SYSPLEXTKDS 51
TKDSN 51
UDX 51
USERPARM 52

installation option keyword (continued)
WAITLIST 52

installation option parameter
BEGIN 38
END 42

installation options
performance considerations 135

installation options data set
changing option parameters and values 38
creating 23
example 24
specifying the installation options data set 27

installation steps 11
installation-defined service

access control checking 207
defining 208
description 205
entry and exit code example 207
executing 209
link editing 207
parameter checking 207
writing 205

Integrity 345
internal key token

aes; 273
DES 275
PKA

RSA private 323, 325–328, 338, 342, 343
IPCS support

contention issues 154

K
KDSR

format 270
KDSR record

format 270
key generator utility program exit parameter block 195–203
key generator utility program installation exit

calling points 193
environment 194
installing 194
processing 194
purpose and use 193
return codes 203
SET statement 203

key part entry
SMF record type 82 139

key store policy
SMF record type 82 143

key token
aes; internal 273
DES

null 280
DES internal 275
PKA

null 308
RSA 1024-bit private internal 325–328
RSA 2048-bit Chinese remainder theorem private
internal 336–338
RSA private external 309
RSA private internal 323, 338, 342, 343
RSA public 309

KEYAUTH installation option 46

Index 459

keyboard
navigation 449
PF keys 449
shortcut keys 449

KGUP 81

L
link editing

callable services 207

M
mainline installation exit

environment 162
exit parameter block 164
input 163
installing 163
parameters 165, 169
purpose and use 162

mapping macro
CSFSMF82 (ICSF) 368

MASTERKCVLEN installation option 46
MAXLEN installation option 46
MAXSESSOBJECTS installation option 46
message recording 146
migrating from PCF 219
Migrating to the common record format (KDSR) key data set
83
migration

terminology 53
migration actions

Cryptographic Services 54
migration process 97
MODIFY command 102
modifying ICSF 102

N
navigation

keyboard 449
noncompatibility mode

description 219, 221
null key token

format 280, 308

O
object ion key (OPK) 353
operator commands

ICSF 104
OPK, object protection key 353
override file

defining on a DD statement 230

P
panels

accessing 29
ICSF Coprocessor Management 126

parameter checking
callable services 207

PCF

PCF (continued)
application 219–221
macro 219
migration to ICSF 219

PCF conversion program installation exit
environment 183
input 184
installing 183
purpose and use 183

PCI Cryptographic Coprocessor configuration
SMF record type 82 141

PCI X Cryptographic Coprocessor timing
SMF record type 82 141

PCI-HSM 2016 compliance mode 96
performance

problems 52, 136
PKA key token

record format
RSA 1024-bit private internal 325–328
RSA 2048-bit Chinese remainder theorem private
internal 336–338
RSA private external 309
RSA private internal 323, 338, 342, 343
RSA public 309

PKDS (public key data set)
creating 18
description 7
header record format 239
record format 240, 241

PKDSCACHE installation option 46
PKDSN installation option 46
private external key token

RSA 309
private internal key token

RSA 323, 325–328, 338, 342, 343
public key data set

improving security and reliability for the PKDS 18
public key data set refresh

SMF record type 82 143
public key token

RSA 309

R
read-write exit parameter block 187, 188
REASONCODES installation option 47
record metadata 82
recording events 137
regional cryptographic server configuration

SMF record type 82 145
regional cryptographic servers

adding 128, 131
adding and removing 127
configuring ICSF to use TCP/IP 129
give access to the ICSF address space 129
removing 128
setup AT-TLS 130
setup the ICSF address space 129

resource names
CCA entry points 439
ICSF entry points 439

RETKEY macro
SVC description 8

return codes

460 z/OS: z/OS ICSF System Programmer's Guide

return codes (continued)
from PCF macros

migration consideration 219
RKX key-token 279
RMF

header record format 361
RSA 1024-bit private internal key token 325–328
RSA key token formats 309
RSA private external key token 309
RSA private internal Chinese remainder theorem key token
336–338
RSA private internal key token 323, 338, 342, 343
RSA public token 309
running ICSF

in coexistence mode 220
in compatibility mode 219
in noncompatibility mode 221

running the conversion program
creating a job to run the conversion program 229
defining conversion program data sets 230

S
scheduling changes for cryptographic keys 148
secondary parameter block 175
section sequence, trusted block 344
security considerations 146
security installation exit

environment 190
input 191
installing 190
purpose and use 189
return codes 192

selecting ICSF startup options
creating the installation options data set 23
creating the startup procedure 27

sending to IBM
reader comments xxv

service installation exit
environment 170
exit parameter block 173
input 172
installing 171
parameters 177
purpose and use 170
return codes 177

SERVICE installation option
syntax 208

service names used in SMF records 371
service stub

description 205
example 210
linking 209
writing 208

SERVICELIBS installation option 48
SERVSCSFMOD0 installation option 49
SERVSIEALNKE installation option 49
SETICSF command

adding a regional cryptographic server 131
changing coprocessor or accelerator status 131

shortcut keys 449
single-record, read-write installation exit

conversion program invocation 223
input 187

single-record, read-write installation exit (continued)
installing 186
purpose and use 186
return codes 188

SMF record type 82
subtype 1 139
subtype 13 140
subtype 14 140
subtype 15 140
subtype 16 141
subtype 18 141
subtype 19 141
subtype 20 141
subtype 21 142
subtype 22 142
subtype 23 142
subtype 24 143
subtype 25 143
subtype 26 143
subtype 43 145
subtype 48 146
subtype 7 139
subtype 8 139
subtype 9 140

SMF recording 137, 203
specifying the installation options data set 27
SSM installation option 49
START command 31
starting ICSF

creating the startup procedure 27
entering the ICSF START command 31, 99
IPL-time 100

startup procedure 11, 27
steps in installation 11
stopping ICSF 99
SVC 143 8
syntax diagrams

how to read 102
SYS1.PARMLIB

customizing 12
description 11
storing startup procedure 28

SYS1.PROCLIB
description 11
storing startup procedure 27

SYS1.SAMPLIB
CSFPRM00 24
description 11

SYSPLEXCKDS installation option 50
SYSPLEXPKDS installation option 50
SYSPLEXTKDS installation option 51

T
testing ICSF 221
TKDS

SMF record type 82 142
TKDS (public key data set)

creating 21
TKDS (token data set)

description 83
format 241

TKDS (token key data set)
description 7

Index 461

TKDSN installation option 51
token data set (TKDS)

description 83
format 241

token key data set
improving security and reliability for the TKDS 21

token validation value (TVV) 274
TRACEENTRY option and ICSF 59
trademarks 456
trusted block create

SMF record type 82 142
trusted blocks 343

U
udx

access control checking 207
UDX installation option 51
user interface

ISPF 449
TSO/E 449

USERPARM installation option 52
using different configurations 124
using the conversion program override file 223

V
V2R2 changed information FMID HCR77B1 xxxi
V2R2 changed information FMID HCR77C0 xxx
V2R2 deleted information FMID HCR77B1 xxxii
V2R2 deleted information FMID HCR77C0 xxxi
V2R2 new information FMID HCR77B1 xxxi
V2R2 new information FMID HCR77C0 xxx
V2R3 changed information FMID HCR77C1 xxix
V2R3 changed information FMID HCR77D0 xxvii
V2R3 deleted information FMID HCR77C1 xxx
V2R3 deleted information FMID HCR77D0 xxviii
V2R3 new information FMID HCR77C1 xxviii
V2R3 new information FMID HCR77D0 xxvii
VERBX 151
virtual storage constraint relief

for the caller of ICSF 136
VSAM data set

creating 15
VTAM session-level encryption

and ICSF 136

W
WAITLIST installation option 52

462 z/OS: z/OS ICSF System Programmer's Guide

IBM®

SC14-7507-08

	Contents
	Figures
	Tables
	About this information
	Who should use this information
	How to use this information
	Where to find more information
	IBM Crypto Education

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Changes made in Cryptographic Support for z/OS V2R2 - z/OS V2R3 (FMID HCR77D0)
	Changes made in Cryptographic Support for z/OS V2R1 - z/OS V2R3 (FMID HCR77C1)
	Changes made in Cryptographic Support for z/OS V2R1 - z/OS V2R2 (FMID HCR77C0)
	Changes made in Cryptographic Support for z/OS V1R13 - z/OS V2R2 (FMID HCR77B1)

	Chapter 1. Introduction to z/OS ICSF
	Features
	Cryptographic hardware features
	Server hardware
	z/OS ICSF FMIDs

	ICSF features
	The Cryptographic Key Data Set (CKDS)
	The Public Key Data Set (PKDS)
	The Token Data Set (TKDS)
	Additional background information
	Running PCF applications on z/OS ICSF
	Using RMF and SMF to monitor z/OS ICSF events
	Controlling access to ICSF

	Steps prior to starting installation

	Chapter 2. Installation, initialization, and customization
	Steps for installation and initialization
	Steps to customize SYS1.PARMLIB
	Creating the CKDS
	ICSF system resource planning for the CKDS
	Additional CKDS performance considerations

	Steps to create the CKDS

	Creating the PKDS
	ICSF system resource planning for the PKDS
	Steps to create the PKDS

	Creating the TKDS
	ICSF system resource planning for the TKDS and session object memory areas
	Steps to create the TKDS

	ICSF system resource planning for random number generation
	Steps to create the installation options data set
	Creating an ICSF CTRACE configuration data set
	Steps to create the ICSF startup procedure
	Steps to provide access to the ICSF panels
	Requiring signature verification for ICSF module CSFINPV2
	Steps to start ICSF for the first time
	Steps for initializing ICSF

	Customizing ICSF after the first start
	Parameters in the installation options data set
	Dispatching priority of ICSF
	Creating ICSF exits and generic services

	Chapter 3. Migration
	Terminology
	Migrating from earlier software releases
	Actions to perform before installing ICSF FMID HCR77C0
	ICSF: Detect any coprocessor that will not become active when ICSF FMID HCR77A1 or later is started
	ICSF: Detect TKDS objects that are too large for the new KDSR record format in ICSF FMID HCR77A1 or later

	Actions to perform before the first start of ICSF FMID HCR77C0
	ICSF: Deprecated parameters in installation options data set
	ICSF: Determine if applications using hash services have archived hashes of long data

	Actions to perform after the first start of ICSF FMID HCR77C0
	ICSF: Accommodate the TRACEENTRY option deprecation

	Callable services
	CCA access control
	Identification of cryptographic features
	Ensure the expected P11 master key support is available
	Key store policy
	KGUP
	DES keys
	ICSF key data sets
	Record metadata
	CKDS
	Migrating to the variable length CKDS

	PKDS
	TKDS
	Migrating to the common record format (KDSR) key data set
	Converting to KDSR format using the CSFCRC callable service
	Converting to KDSR format using the ICSF panels

	Migrating to 24-byte DES master key
	Installation options data set
	Function restrictions
	CICS attachment facility
	Dynamic LPA load
	Dynamic service update
	Special secure mode
	Resource Manager Interface (RMF)
	System abend codes
	SMF records
	TKE workstation
	Access to callable services
	TKE enablement from the support element
	Enabling access control points for PKCS #11 coprocessor firmware

	Migrating from the IBM eServer zSeries 900
	Migrating a CKDS and PKDS between a CCF system and a non-CCF system
	CCF only system
	CCF with PCICCs

	Callable services
	Functions not supported
	Setup considerations
	Programming considerations

	Migrating to PCI-HSM 2016 compliance mode
	Compliance warnings
	Migration process
	Identifying key tokens outside of compliance warning events
	Ensure the key tokens identified can become compliant-tagged
	Converting key tokens to become compliant-tagged

	Chapter 4. Operating ICSF
	Starting and stopping ICSF
	ARM policy

	Starting ICSF during IPL-time
	Modifying ICSF
	Command syntax notation
	How to read syntax diagrams
	Symbols
	Syntax items
	Syntax examples

	ICSF operator commands
	Display ICSF
	SETICSF

	Using different configurations
	Adding and removing cryptographic coprocessors
	Adding cryptographic coprocessors
	Steps for activating/deactivating cryptographic coprocessors
	Steps to configure on/off cryptographic coprocessors
	Steps for enabling/disabling cryptographic coprocessors
	Intrusion latch on the cryptographic coprocessors

	Adding and removing regional cryptographic servers
	Steps to add a regional cryptographic server
	Steps to remove a regional cryptographic server
	Configuring ICSF to use TCP/IP for communications with regional cryptographic servers
	Steps to configure ICSF to use TCP/IP
	Setup the ICSF address space for z/OS UNIX System Services
	Give the ICSF address space access to the TCP/IP stack
	Default Key Label Checking
	Setup AT-TLS (optional)

	Displaying cryptographic coprocessor status using the DISPLAY ICSF operator command
	Adding a regional cryptographic server using the SETICSF operator command
	Changing regional cryptographic server status using the SETICSF operator command
	Dynamic service update
	Considerations when using dynamic service update
	Steps to initiate dynamic service update
	Verifying dynamic service update
	Deactivating dynamic service update

	Performance considerations for using installation options
	Dispatching priority of ICSF
	VTAM session-level encryption
	System SSL encryption
	Access method services cryptographic option
	Remote key loading
	Event recording
	System Management Facilities (SMF) recording
	ICSF Initialization (Subtype 1)
	Operational Key Part Entry (Subtype 7)
	CKDS Refresh (Subtype 8)
	Dynamic CKDS Update (Subtype 9)
	Dynamic PKDS Update (Subtype 13)
	Cryptographic Coprocessor Clear Master Key Entry (Subtype 14)
	Cryptographic Coprocessor Retained Key Create or Delete (Subtype 15)
	Cryptographic Coprocessor TKE Command Request or Reply (Subtype 16)
	Cryptographic Coprocessor Configuration (Subtype 18)
	PCI X Cryptographic Coprocessor Timing (Subtype 19)
	Cryptographic Coprocessor Timing (Subtype 20)
	ICSF Sysplex Group (Subtype 21)
	Trusted Block Create (Subtype 22)
	Token Data Set (TKDS) (Subtype 23)
	Duplicate Key Tokens (Subtype 24)
	Key Store Policy Key Token Authorization Checking (Subtype 25)
	PKDS Refresh (Subtype 26)
	Key Store Policy PKA Key Management Extensions (Subtype 27)
	High Performance Encrypted Key (Subtype 28)
	TKE Workstation Audit Record (Subtype 29)
	Key Store Policy Archived and Inactive Checking (Subtype 30)
	Cryptographic usage statistics (Subtype 31)
	CCA symmetric key lifecycle event (Subtype 40)
	CCA asymmetric key lifecycle event (Subtype 41)
	PKCS #11 key lifecycle event (Subtype 42)
	Regional cryptographic server configuration (Subtype 43)
	CCA symmetric key usage event (Subtype 44)
	CCA asymmetric key usage event (Subtype 45)
	PKCS #11 key usage event (Subtype 46)
	PKCS #11 no key usage event (Subtype 47)
	Compliance warning event (Subtype 48)

	Message recording

	Security considerations
	Controlling the program environment
	Controlling access to KGUP
	Controlling access to CSFDUTIL
	Controlling access to the callable services
	Controlling access to cryptographic keys
	Controlling access to secure key tokens
	Scheduling changes for cryptographic keys
	Controlling access to administrative panel functions
	Obtaining RACF SMF log records

	Debugging aids
	Component trace
	Abnormal endings
	IPCS formatting routine
	VERBX
	Detecting ICSF serialization contention conditions
	IPCS support for diagnosing contention issues in a dump

	ENF signals

	Chapter 5. Installation exits
	Types of exits
	Mainline exits
	Exits for the services
	The PCF CKDS conversion program exit
	The single-record, read-write exit
	The cryptographic key data set entry retrieval exit
	Security exits
	The KGUP exit

	Entry and return specifications
	Registers at entry
	Registers at return

	Exits environment
	Mainline exits
	Service exits
	CKDS entry retrieval exit
	KGUP, Conversion Programs, and Single-record, Read-write exits
	Security exits

	Exit recovery
	Mainline installation exits
	Purpose and use of the exits
	CSFEXIT1
	CSFEXIT2
	CSFEXIT3
	CSFEXIT4
	CSFEXIT5

	Environment of the exits
	Installing the exits
	Input
	The Exit Parameter Block
	Parameters

	Return Codes

	Services installation exits
	Purpose and use of the exits
	Environment of the exits
	Installing the exits
	Input
	Exit parameter block
	Secondary parameter block
	Parameters

	Return Codes
	CSF_SERVICE_EXIT - ICSF callable services exit

	Cryptographic key data set entry retrieval installation exit
	Purpose and use of the exit
	Environment of the exit
	Installing the exit
	Input
	Return codes

	PCF conversion program installation exit
	Purpose and use of the exit
	Environment of the exit
	Installing the exit
	Input
	Return codes

	Single-record, Read-write installation exit
	Purpose and use of the exit
	Environment of the exit
	Installing the exit
	Input
	Return codes

	Exit points for security installation exits
	Security installation exits
	Purpose and use of the exits
	Security initialization exit
	Security termination exit
	Security service exit
	Security key exit

	Environment of the exits
	Installing the exits
	Input
	Return codes

	Key generator utility program installation exit
	Purpose and use of the exit
	KGUP calling points
	Processing in the exit

	Environment of the exit
	Installing the exit
	Input
	The SET statement
	Return codes

	Chapter 6. Installation-defined Callable Services
	Writing a callable service
	Contents of registers
	Security access control checking
	Checking the parameters
	Link-editing the callable service

	Defining a callable service
	Writing a service stub
	Example of a service stub

	Chapter 7. Converting a CKDS from fixed length to variable length record format
	Chapter 8. Migration from PCF to z/OS ICSF
	Running PCF and z/OS ICSF on the same system
	Running in compatibility mode
	Running in coexistence mode
	Changing the DES master key in compatibility or coexistence mode
	Running in noncompatibility mode
	Specifying compatibility modes during migration

	Converting a PCF CKDS to ICSF format
	How the PCF conversion program runs
	Calling installation exits during conversion

	Using the conversion program override file
	Bypassing conversion of entries
	Including information in a key entry
	Converting key types

	Running the conversion program
	Example of a Conversion Initial Activity Report
	Example of a Conversion Update Activity Report

	Appendix A. Diagnosis reference information
	Cryptographic Key Data Set (CKDS) formats
	Public Key Data Set (PKDS) format
	Format of the PKDS header record
	Format of the PKDS record

	Token data set (TKDS) format
	Format of the header record of the token data set
	Format of the token and object records
	Common section of the token and object records
	Format of the token-specific section of the token record
	Format of the object-specific sections of the token object records

	Common record format (KDSR)
	AES key token format
	AES internal fixed-length key token
	Token validation value

	DES key token formats
	DES fixed-length key token
	External RKX DES key token
	DES null key token

	Variable-length symmetric key token formats
	Variable-length symmetric key token
	Variable-length symmetric null key token

	PKA key token formats
	Internal PKA tokens
	PKA null key token
	RSA key token formats
	RSA public key token
	RSA private external key token
	RSA private internal key token

	ECC key token format
	Associated data format for ECC token
	AESKW wrapped payload format for ECC private key token

	Trusted blocks
	Trusted block sections
	Trusted block integrity
	Number representation in trusted blocks
	Format of trusted block sections

	Data areas
	The Cryptographic Communication Vector Table (CCVT)
	The Cryptographic Communication Vector Table Extension (CCVE)
	Generic Service Table (CSFMGST)

	RMF measurements table

	Appendix B. ICSF SMF records
	Record type 82 (52) — ICSF record
	Record environment
	Record mapping
	SMF header
	ICSF header (for all subtypes 40 or greater)
	Main section (subtype information)
	Audit header and audit section
	Tag-Length-Value (TLV) triplets
	Service names used in SMF records

	Subtype 1
	Initialization/Options Refresh section

	Subtype 7
	Operational key load section

	Subtype 8
	Cryptographic key data set refresh section

	Subtype 9
	Dynamic CKDS update

	Subtype 13
	Dynamic PKDS update

	Subtype 14
	Cryptographic coprocessor master key entry

	Subtype 15
	PCI Cryptographic coprocessor retained key create/delete

	Subtype 16
	PCI Cryptographic coprocessor TKE

	Subtype 18
	Cryptographic processor configuration

	Subtype 19
	PCI X Cryptographic coprocessor timing

	Subtype 20
	Cryptographic processor processing times

	Subtype 21
	ICSF sysplex group change section

	Subtype 22
	Trusted block create callable services section

	Subtype 23
	Token data set update

	Subtype 24
	Duplicate tokens found

	Subtype 25
	Key store policy for key token authorization checking

	Subtype 26
	Public key data set refresh

	Subtype 27
	PKA key management extensions

	Subtype 28
	High performance encrypted key

	Subtype 29
	TKE workstation audit record

	Subtype 30
	Key store policy archived and inactive KDS records

	Subtype 31
	Cryptographic usage statistics

	Subtype 40
	CCA symmetric key lifecycle event

	Subtype 41
	CCA asymmetric key lifecycle event

	Subtype 42
	PKCS#11 object lifecycle event

	Subtype 43
	Regional cryptographic server configuration

	Subtype 44
	CCA symmetric key usage event

	Subtype 45
	CCA asymmetric key usage event

	Subtype 46
	PKCS#11 key usage event

	Subtype 47
	PKCS#11 no key usage event

	Subtype 48
	Compliance warning event

	Appendix C. CICS-ICSF Attachment Facility
	Installing the CICS-ICSF Attachment Facility
	Steps for installing the CICS-ICSF attachment facility
	Implementing the CICS wait list

	Appendix D. Helpful hints for ICSF first time startup
	Checklist for first-time startup of ICSF
	Step 1. Hardware setup
	Step 2. LPAR activation profiles
	Step 3. ICSF setup
	Step 4. TKE setup
	Step 5. ICSF startup
	Step 6. Loading master keys and initializing the CKDS through ICSF panels
	Step 7. Customizing TKE and loading master keys
	Step 8. CICS-ICSF Attachment Facility setup
	Step 9. Complete ICSF initialization

	Commonly encountered ICSF first time setup/initialization messages

	Appendix E. Using AMS REPRO encryption
	Steps for setting up ICSF

	Appendix F. Systems without Cryptographic features
	Applications and programs
	Callable services
	ICSF setup and initialization
	Secure Sockets Layer (SSL)
	TKE workstation

	Appendix G. Resource names for CCA and ICSF entry points
	Appendix H. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

